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ABSTRACT

Training deep neural networks is a computationally expen-
sive task. Furthermore, models are often derived from propri-
etary datasets that have been carefully prepared and labelled.
Hence, creators of deep learning models want to protect their
models against intellectual property theft. However, this is not
always possible, since the model may, e.g., be embedded in a
mobile app for fast response times. As a countermeasure wa-
termarks for deep neural networks have been developed that
embed secret information into the model. This information
can later be retrieved by the creator to prove ownership.

Uchida et al. proposed the first such watermarking method.
The advantage of their scheme is that it does not compromise
the accuracy of the model prediction. However, in this paper
we show that their technique modifies the statistical distribu-
tion of the model. Using this modification we can not only
detect the presence of a watermark, but even derive its embed-
ding length and use this information to remove the watermark
by overwriting it. We show analytically that our detection
algorithm follows consequentially from their embedding al-
gorithm and propose a possible countermeasure. Our findings
shall help to refine the definition of undetectability of water-
marks for deep neural networks.

Index Terms— Deep Neural Network, Watermark, At-
tack

1. INTRODUCTION

As a countermeasure to possible intellectual property thefts
watermarks for deep neural networks have been developed
that embed secret information into the model [1,2]. Uchida et
al. proposed the first such watermarking method [1]. Loosely
speaking, their idea is to introduce a secondary objective into
the training phase that modifies the model weights, such that
they carry the watermark.

An important goal of watermarking digital signals, e.g. im-
ages or audio, is undetectability, i.e. the original signal and
the watermarked signal are perceptually indistinguishable.
In this paper we show that such access to the model can be
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detrimental to the undetectability and consequently robust-
ness of the watermark. Our analysis reveals that the standard
deviation of the distribution of the weights systematically in-
creases as the embedded watermark length increases. Hence,
by measuring the standard deviation we can not only detect
the presence of a watermark, but more importantly extract the
length of the watermark. Using this information we can trig-
ger a simple, yet efficient overwriting algorithm that removes
the watermark. Note that the effectiveness of overwriting is
greatly enhanced, if the length of the watermark is known.

2. RELATED WORK

Watermarking deep neural networks is a timely issue, since
other protection mechanisms, such as encryption [3,4] cannot
protect against exfiltration using a query API [5]. However,
even in the case of remote execution of the model, a query in-
terface seems unavoidable. Hence there is a growing interest
in watermarks for deep neural networks.

The first approach for such watermarks was proposed by
Uchida et al. [1] and is in detail analyzed in this paper. The
second approach was proposed by Zhang et al. [2]. Compared
to Uchida et al.’s approach, this approach has the advantage
that it can be detected without access to the network model.
However, its disadvantage is that it affects the accuracy of the
network and hence is less imperceptible, e.g. valid images that
resemble the watermarks may be misclassified.

In Uchida et al.’s paper [1], given a model network with
or without trained parameters, the task of watermarking is de-
fined as embedding a T -bit vector b ∈ {0, 1}T into the pa-
rameters of one or more layers of the neural network. In the
following discussion, we refer to the length of watermark T
as embedding dimension. Although it is straight forward to
embed a watermark into a neural network by directly modi-
fying the parameters of the training model, this approach will
likely degrade the performance of the model. Instead, Uchida
et al. employ a binary cross entropy term in the loss function
to serve as a regularizer and therefore are able to embed a wa-
termark during the training process that does not impact the
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model prediction accuracy.

ER(w) = −
T∑

j=1

(bj log(yj) + (1− bj) log(1− yj)) (1)

where yj = σ(
∑

iXjiwi), σ(·) is the sigmoid function and
X is the embedding matrix – the secret key in watermarking –
X ∈ RT×N . Here, w is the vector of weights for the network
layer, N refers to the total number of parameters for the layer
that is going to be watermarked. The algorithm to retrieve the
jth bit of the watermark is simply:

bj == s(yj)

where s is the step function:

s(x) =

{
1 x ≥ 0.5

0 x < 0.5

This process is a binary classification learning process.
Recall that the embedding matrix X serves as the secret

key. Uchida et al. propose three possible constructions for the
embedding matrix X . In their experiments, constructing X
by filling with random N(0, 1) is preferred to two other types
of X , as the other two X will significantly alter the distribu-
tion of parameter distribution, which will make it trivial for
adversaries to detect of the existence of a watermark. We will
therefore use this method to construct the embedding matrix
in the remainder of the paper.

3. ATTACKS ON UCHIDA ET AL.’S SCHEME

Our detection algorithm is based on the observation that the
variance of the model parameter distribution, which we call
weights variance or weights standard deviation, will increase
noticeably and systematically during the process of water-
mark embedding algorithm by Uchida et al. The detection
algorithm is then to simply measure the weights variance of
the model in question.

3.1. Weights Variance Analysis

Our analysis follows the following steps: we first approximate
the cost regularizer by the embedding dimension T times a
small cost function demonstrating that T will change the im-
portance of the embedding regularizer. Then we show that
weights variance will tend to be large in order to minimize the
embedding regularizer. Therefore, as T increases the weights
variance of the training model will increase as well.

The loss function to embed a T bits watermarks is

E(w) = E0(w) + λER(w) (2)

Here E0(w) is the original cost function and the embed-
ding regularizer λER(w) is the sum of binary cross entropies,
i.e. the equation in (1).

As each row of the embedding parameterX is constructed
by an independent random standard normal variable N(0, 1),
we can roughly regard each row of the matrixX as identically
distributed, i.e. all the rows of matrix X are approximately
equal to a vector x = (x1, ..., xN ) with each xi randomly
generated by an independent variable N(0, 1). Hence, for
each yj we have

yj ≈ σ(xw) = σ(
∑
i

xiwi)

and therefore we can approximate ER(w) by:

ER(w) ≈ −
T∑

j=1

(bj log(y) + (1− bj) log(1− y))

= −T (b log(y) + (1− b) log(1− y))

(3)

where b is the mean of bi.
We define function C(w):

C(w) = b log(y(w)) + (1− b) log(1− y(w))

where y(w) = 1
1+exp(−z) , z(w) =

∑
i xiwi. So we have

E(w) ≈ E0(w)− λT · C(w) (4)

Clearly, T is an indicator of the importance of the embed-
ding regularizer. The training process will try to reach the
point where w will maximize C(w) (note there is a negative
sign at the beginning of ER(w)).

We take the derivative to find global maximum of C(w)

C ′(y) =
b

y
− 1− b

1− y
= 0

We get y = b and by plugging in the value of y, we have

y(z) =
1

1 + e−z
= b, z = log(

b

1− b
)

z(w) =
∑
i

xiwi = log(
b

1− b
)

Since x follows N(0, 1), the variance of elements in x is
approximately 1, and the mean of those elements is approxi-
mately 0, hence we can reasonably assume∑

i

x2i = N

According to Cauchy-Schwarz inequality [6],

|
∑
i

xiwi|2 ≤
∑
i

x2i
∑
i

w2
i

∑
i

w2
i ≥ (log(

b

1− b
))2

1

N
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Since the average of wi is set to 0 in many algorithms in
order to simplify networks, we have

V ar(w) =
1

N

∑
i

(wi−w̄)2 =
1

N

∑
i

w2
i ≥ (log(

b

1− b
))2

1

N2

Therefore, when T is larger, the relative importance of the
embedding regularizer will increase, and hence push the
weights variance to be larger to satisfy the above inequality.
Note that this result extends to the case when the weights
average is not 0. It only requires a more complex and space-
consuming proof. The inequality

V ar(w) ≥ (log(
b

1− b
))2

1

N2
(5)

also indicates that the weights standard deviation will be
larger when bi = 1 or 0 for all i, and will be smaller when all
bi are random bits, since the lower bound is a function of the
watermark bits average b. We confirm this observation in our
experimental results.

3.2. Watermark Removing

Although we are able to detect the existence of a watermark,
it is more difficult to remove it, as the adversary has no knowl-
edge of the secret key used to embed the watermark [7]. In
order to remove the watermark, we use an algorithm similar to
Uchida et al.’s embedding scheme which preserves the effec-
tiveness of the neural network, but eradicates the watermark
bits during the training process.

Basically, we are aiming to embed another watermark to
the existing, already watermarked model using the removing
matrix. We consider our removal successful when only half of
the old watermark bits can be detected by the embedding ma-
trix, since any other random matrix is expected to achieve the
same detection rate [8]. We consider two different approaches
to choose the removing matrix and removing watermark.

In Overwriting we use a single removing matrix and a
single watermark in several epochs of training. Using this
method we are able to not only remove the old watermark,
but also embed our own watermark to the training model.

In Multi-embedding we use different removing matrices
and watermarks for each epoch in the removing process. This
method is expected to require fewer epochs to remove the old
watermark, as the first epoch of embedding modifies the value
of weights most, which is indicated in our experiments.

Since in our removal algorithms, one or several other
watermarks are also embedded into the training model, the
weights standard deviation will remain the same or even
further increase. To completely restore the model back to
the state when it is trained without embedding watermark,
we need to restrict and deflate the weights variance as if a
watermark had been never embedded.

To achieve this goal, we attach a L2 regularization term
to the loss function for the embedding regularizer. An L2

regularization term is the sum of squares of all weights [9]:

C = C0 + λ
∑
w

w2 (6)

where C0 is the original cost function. An L2 regularizer
is commonly used to prevent overfitting. However, since an
L2 regularizer trains the weights towards a limit of 0, and
the average of weights is approximately 0 in most cases, the
weights standard deviation will also deflate.

Since the L2 regularizer is able to deflate the weights stan-
dard deviation, it is natural to include it in the loss function
watermark embedding when we want to prevent the weights
standard deviation to increase, similar to Equation (6). In this
way, we are able to hide an embedded watermarking from our
detection algorithms, preserve the model parameter distribu-
tion and improve the undetectability of the watermark.

4. EXPERIMENTS

Our experimental settings strictly follow the one conducted
by Uchida et al. The common object-recognization dataset
CIFAR-10 [10] is used in our experiment to train the model
while embedding watermarks. The wide residual network
[11] is used as our DNN for embedding the watermark. The
wide residual network is an efficient variant of the residual
network [12]. We set the depth parameter N = 1 and k = 4
in all our experiments. To remove the potential correlation
amongst the data, for each of the combination of watermarks
and epochs, we train the watermarked model separately in-
stead of training them for a total of 200 epochs and collecting
data for different epochs during the training.

4.1. Detection of Watermark

We train the neural network from scratch on the CIFAR-10
dataset with different embedding dimensions, epochs and wa-
termarks, and record the weights variance in these different
settings. We write embedding dimension T = 0 for the case
where the neural network is trained without embedding wa-
termark. Figure 1a shows the distribution of weights from
one set of sample data. We can see that the variance of the
weights becomes larger as the dimension, i.e. the number of
embedded bits, T increases. From Figure 1b, we can see that
the weights standard deviation scales approximately linearly
with the watermark dimension T . This implies that we are
able to perform regression analysis and determine the embed-
ding dimension based on weights standard deviation. Figure
1c shows the distribution of weights standard deviation for an
all-one watermark bs and a random watermark br. We can see
that the standard deviation for an all-one watermark is sys-
tematically larger than those for a random watermark. This
provides experimental evidence for our analysis in Equation
(5).
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(a) The distributions of weights on the layer which
an all-one watermark was embedded for neural
network when trained for 70 epochs.
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(b) The weights standard deviation scales linearly
with the watermark dimension T (embedding di-
mension 256).
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(c) Comparison of the distribution of weight stan-
dard deviation for watermark that is all-one or ran-
dom.
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(d) The variation of accuracy with the advance of
epochs for different removing dimension.
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(e) The variation of bits error rate with different
embedding dimensions (removing dimension 256).
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(f) The variation of bits error rate with different
removing dimension (embedding dimension 256).
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(g) Weights standard deviation as function of
epochs with different coefficient for L2 regularizer
when training and embedding watermarks.

4.2. Removal of Watermark

Our results indicate that the multi-embedding approach seems
to perform better compared to overwriting with a static water-
mark, with 50% bit detection rate and great model accuracy.
For the overwriting approach, the bit error rates go up to 35%.
For multi-embed approach, the bit error rates quickly go up to
50% and fluctuates around this level. Therefore, in the follow-
ing experiments, we use the multi-embed approach without
explicitly mentioning it.

Figure 1d shows the variation of accuracy during the wa-
termark removal process. It shows that the accuracies vary
in an acceptable interval, and do not significantly decrease
compared to those before watermark removal. We define the
removing dimension as the number of watermark bits embed-
ded to remove the original watermark. Figure 1e shows the
watermark removal efficiency with same embedding dimen-
sion and removing dimension. We can see that as embedding
dimension increases, it takes more epochs to remove the wa-

termark. This conforms to our explanation, since a larger em-
bedding dimension has a greater impact on the total loss, as
shown in Equation (5).

In Figure 1f we can see that as the removing dimension
increases, it takes fewer epochs to reach a 50% bit error rate,
i.e. it is easier to remove a watermark. Hence, for larger em-
bedding dimensions, we require larger removing dimensions
in order to be efficient. However, we should also not use a
too large removing dimension as the model accuracy will be
negatively affected, which is confirmed in our further exper-
iments. Therefore, a match between the embedding and the
removing dimension is desirable.

An appropriate coefficient of the L2 regularization term
in the loss function is critical when we want to preserve the
standard deviation. From Figure 1g we can see that when
the embedding dimension is 64, the most suitable coefficient
of L2 regularizer is above 4. The weights standard deviation
converges to the same value as when no watermark was em-
bedded. We conclude that with an appropriate choice of coef-
ficient, it is possible to evade the detection of the watermark
and hence deter removal.

5. CONCLUSION

We presented an attack to reliably detect and remove the dig-
ital watermarks in deep neural networks proposed by Uchida
et al. We have shown that their proposed algorithm signifi-
cantly and systematically impacts the model parameter distri-
bution, notably the weights standard deviation. Furthermore,
we show a method to prevent detection of the watermark by
the model parameter distribution using L2 regularization.
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