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ABSTRACT

Embedding costs used in content-adaptive image stegano-
graphic schemes can be defined in a heuristic way or with a
statistical model. Inspired by previous steganographic meth-
ods, i.e., MG (multivariate Gaussian model) and MiPOD
(minimizing the power of optimal detector), we propose a
model-driven scheme in this paper. Firstly, we model image
residuals obtained by high-pass filtering with quantized mul-
tivariate Gaussian distribution. Then, we derive the approxi-
mated Fisher Information (FI). We show that FI is related to
both Gaussian variance and filter coefficients. Lastly, by se-
lecting the maximum FI value derived with various filters as
the final FI, we obtain embedding costs. Experimental results
show that the proposed scheme is comparable to existing
steganographic methods in resisting steganalysis equipped
with rich models and selection-channel-aware rich models.
It is also computational efficient when compared to MiPOD,
which is the state-of-the-art model-driven method.

Index Terms— Steganography, steganalysis, multivariate
Gaussian model, spatial images

1. INTRODUCTION

Steganography is the technique of secretly conveying mes-
sages through digital media, and it receives challenges from
the technique of steganalysis which aims to reveal its pres-
ence [1–5]. Most of existing content-adaptive image stegano-
graphic methods are based on a distortion-minimization
framework [6, 7], in which the distortion function can be
designed to associate cost with data embedding impact. In
most schemes [8–10], data embedding changes are distributed
in the noisy/complex regions of an image through heuristi-
cally defining low embedding costs in such regions. On the
other hand, some schemes try to define costs using a sta-
tistical model. In [11], a model-driven approach named MG
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(multivariate Gaussian model) was proposed to model the im-
age elements as a sequence of independent Gaussian variables
and try to minimize the Kullback-Leibler (KL) divergence be-
tween the cover and the stego objects with the corresponding
Fisher information (FI) [1]. The performance is comparable
to HUGO (highly undetectable steGO) [12]. As an extension
of MG, a multivariate generalized Gaussian (MVGG) model
was adopted in [13] and its performance is better than MG.
In [14], a more advanced method called MiPOD (minimizing
the power of optimal detector) was proposed to model the
image noises and minimize the detectability of the optimal
detector. Its performance is comparable to HILL (high-low-
low) [10] against steganalytic schemes such as the spatial rich
model (SRM) [15] and maxSRMd2 [16]. However, it is re-
quired to estimate noise variance and it is rather complicated
and less efficient to perform the estimation.

Inspired by MG and MiPOD, we propose a steganograph-
ic scheme in this paper by modeling image residuals, which
are obtained by filtering an image with high-pass filters, with
multivariate Gaussian distribution. Since steganalysis bene-
fits from extracting effective features from image residual-
s, our method, abbreviated as MGR (multivariate Gaussian
for residuals), aims to better preserve the statistical model of
an image by directly associating embedding costs with im-
age residuals. The distribution of stego image residuals can
be approximately derived from the embedding change prob-
abilities associated with image pixels. In this way, FI can be
efficiently obtained by using the estimated local variance of
residuals and the corresponding high-pass filter coefficients.
We use several high-pass filters to obtain the residuals, so that
the maximum FI value can be obtained to further enhance
security performance. This manner can be considered as a
countermeasure to resist steganalysis utilizing multiple filter-
s, such as SRM. Experiments show that the proposed method
performs well and has low computation complexity.

The rest of this paper is organized as follows. In Section
2, the preliminary knowledge regarding the related work of
MG is briefly reviewed. The proposed method is presented in
Section 3 and experiments are given in Section 4. This paper
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is concluded in Section 5.

2. PRELIMINARIES

In MG [11], a cover image is modeled as a sequence of n-
independent random variables X = (X1, . . . , Xn), each of
which is distributed as quantized zero-mean Gaussian with
variance νi, denoted by Q∆(N (0, νi)), where Q∆ is an u-
niform scalar quantizer with quantization step ∆. Denote
p(i) = {p(i)

j } and q(i) = {q(i)
j } (j ∈ M = {k∆|k ∈ Z})

the probability mass function (PMF) of cover Xi and stego
Yi, respectively. For a large n and small embedding change
probabilities βi, the total KL divergence between the cover
and the stego can be approximated by:

n∑
i=1

DKL(p(i)||q(i)) =
1

2

n∑
i=1

β2
i Ii(0), (1)

where

Ii(0) =
∑
j

1

p
(i)
j

(
∂q

(i)
j

∂βi
|βi=0)2 (2)

is the FI [1]. We limit our discussion to ternary embedding,
where the embedding change Ni = Yi −Xi ∈ {+1,−1, 0}.
We assume β+

i = β−i = βi and β0
i = 1− 2βi. Under such an

assumption, the PMF of the stego is

qj = (1− 2βi)pj + βi(pj+1 + pj−1). (3)

Denote fν(x) the zero-mean Gaussian probability density
function with the variance ν. The quantization performs as

F∆(x) =

∫ x+∆/2

x−∆/2

fν(x)dx. (4)

Using the mean value theory (MVT), we have

pj = F∆(j∆) = ∆fv(j
′∆) (5)

for some j′ ∈ (x−∆/2, x+ ∆/2). Using Taylor expansion
of F∆(x) at x = j∆, we have

pj±1 =

∞∑
l=0

F
(l)
∆ (j∆)

(±∆)l

l!
. (6)

Therefore, we have

∂q
(i)
j

∂βi
|βi=0 = −2pj + pj−1 + pj+1 = ∆3f ′′v (j∆) +O(∆4),

(7)
and

Ii(0) ≈
∑
j

∆6(f ′′v (j∆))2

∆fv(j′∆)
≈ ∆4

v2 (8)

The minimization problem of (1) is subjected to the payload
constraint as

αn =

n∑
i=1

h(βi), (9)

where h(βi) = −2βi lnβi − (1− 2βi) ln(1− 2βi) is the en-
tropy function and α is the relative payload. βi and λ can be
numerically obtained using Lagrange multipliers, and embed-
ding costs can be computed as

ξi =
1

λ
ln(

1

βi
− 2). (10)

With the costs, practical embedding codes such as STC (syn-
drome trellis code) [7], or embedding simulator can be used.

3. RESIDUAL MODEL-BASED STEGANOGRAPHY

3.1. Image Filtered Residuals

It is common in steganalysis to use high-pass filters to ob-
tain image residuals for extracting effective features [15, 17].
Therefore, we aim to minimize embedding distortion by bet-
ter preserving the statistical model of image residuals. As-
sume Y = X + N , where N is the embedding changes.
When applying a high-pass filter H on the stego image, we
arrive

ηY = Y ⊗H = (X +N)⊗H = ηX +N ⊗H, (11)

where ηX = (ηX1
, · · · , ηXn

) and ηY = (ηY1
, · · · , ηYn

) are
the filtered residuals of cover and stego, respectively. The 2-D
high-pass filter is formed as:

H =

a11 · · · a1S

· · · · · · · · ·
aR1 · · · aRS

 , auv ∈ Z,
R∑
u=1

S∑
v=1

auv = 0. (12)

3.2. Obtaining Embedding Costs from Residual Model

Different from MG [11] in which image pixels were mod-
eled by Gaussian distribution, we model the filtered resid-
uals as zero-mean quantized Gaussian distributions ηXi ∼
Q∆(N (0, νi)). Without loss of generality, we reuse the sym-
bols p(i) = {p(i)

j } and q(i) = {q(i)
j } (j ∈ M) defined in

Section 2 to denote the PMF of ηXi
and that of ηYi

, respec-
tively.

Assume the probabilities of embedding changes are al-
most the same in local region, i.e., βt ≈ βi for t ∈ H, where
H is the neighborhood of ηXi

defined by the support of the
high-pass filter H . This is reasonable since by applying the
spreading rule [5] with a low-pass filter to smooth the costs
such as HILL, or smooth the FI such as MiPOD, the embed-
ding probabilities will become uniform in local region. Simi-
lar to (3), the distribution of ηYi is derived as

qj = β0
i pj +

1

R× S

R∑
u=1

S∑
v=1

(β+
uvpj+auv

+ β−uvpj−auv
)

≈ (1− 2βi)pj +
βi

R× S

R∑
u=1

S∑
v=1

(pj+auv + pj−auv ).

(13)
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Following the process from (4) to (8), we have

pj±k =

∞∑
l=0

F
(l)
∆ (j∆)

(±k∆)l

l!

= pj +
k2∆3f ′′ν (j∆)

2
+O((k∆)4).

(14)

By taking the partial derivative of qj , we have

∂qj
∂βi
|βi=0 = −2pj +

1

R× S

R∑
u=1

S∑
v=1

(pj+auv + pj−auv )

=
∆3f ′′ν (j∆)

R× S

R∑
u=1

S∑
v=1

a2
uv +O(∆4).

(15)
Consequently, the steganographic FI associated with a high-
pass filterH is

IHi (0) ≈
∑
j

∆6(f ′′ν (j∆))2(
∑R
u=1

∑S
v=1 a

2
uv)

2

(R× S)2∆fν(j′∆)

≈
∆4(

∑R
u=1

∑S
v=1 a

2
uv)

2

(R× S)2ν2
i

.

(16)

Please note that we can consider the obtained FI in (16) as a
generalized version of (8). When the filter H is replaced by
an impulse function where R = S = 1 and a1,1 = 1, the
obtained expression of IHi (0) is reduced to (8).

Compared to MiPOD which requires to compute noise
variance in an inefficient way, the variance νi in our proposed
scheme can be estimated in a simple way as MG by using a
3× 3 neighbourhood for estimation as follows:

νi = max{0.01, EN (η2
i )− [EN (ηi)]

2} (17)

where EN is the mean function for neighbourhood and the
lower boundary 0.01 is used for preventing zero denominator.

As indicated in [1], a larger value of FI will lower the
steganographic performance. As a result, we propose to em-
ploy various of filters and use the maximum FI values for each
location to compute the embedding costs. The final FI values
are computed as

Ii(0) = max{IHk
i (0)},Hk ∈ H. (18)

where H denotes the high-pass filter set. As MG, βi can be
solved by minimizing (1) with constraint (9), and the embed-
ding costs ξi can be solved according to (10).

In [5], the spreading rule (SR) has been proposed and later
implemented in [10, 13, 14] to improve undetectability. We
also apply SR for costs by using an average filter L to obtain
the final embedding costs:

ρ = ξ ⊗L. (19)

The whole processing pipeline of the proposed scheme is il-
lustrated in Fig. 1.
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Fig. 1. The processing pipeline of the proposed MGR
scheme.
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Fig. 2. Typical high-pass filters used in this paper.

Table 1. PE of MG and that of MGR with different high-pass
filters under different payload α against SRM. MGR∗ denotes
the scheme using SH, SV, and KB filters together.

α 0.05 0.1 0.2 0.3 0.4 0.5

MG 0.3715 0.2935 0.2131 0.1654 0.1339 0.1119
MGR(SH) 0.4083 0.3467 0.2686 0.2142 0.1733 0.1400
MGR(KB) 0.4327 0.3668 0.2745 0.2066 0.1617 0.1253
MGR(KV) 0.4155 0.3511 0.2485 0.1884 0.1443 0.1129

MGR∗ 0.4516 0.3951 0.3081 0.2383 0.1882 0.1518

Table 2. PE of MGR∗ with h× h average filter under differ-
ent payloads α against SRM.

α 0.05 0.1 0.2 0.3 0.4 0.5

h = 3 0.4584 0.4108 0.332 0.2741 0.2193 0.1782
h = 5 0.4653 0.4296 0.358 0.2961 0.2473 0.2020
h = 7 0.4668 0.4289 0.3624 0.3015 0.2506 0.2103
h = 9 0.4644 0.4276 0.3587 0.2991 0.2488 0.2079
h = 11 0.4613 0.4258 0.3565 0.2974 0.2463 0.2065

4. EXPERIMENTS

4.1. Setup

We conducted experiments to verify the performance of
the proposed method. All experiments were performed on
BOSSBase ver 1.01 database [18] containing 10000 gray-
scale images of 512 × 512 pixels. Five existing content-
adaptive steganographic schemes were used for compari-
son. Three of them were designed heuristically: WOW [8],
S-UNIWARD [9] (with the stable constant σ = 1), and
HILL [10]. Two of them were model-based: MG [11] and
MiPOD [14]. The ternary optimal embedding simulator was
used for all methods. The payload rate was measured by bit
per pixel (bpp).
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Fig. 1. PE of the proposed method and existing steganographic schemes.
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Fig. 3. Steganalytic performance (PE) of the proposed
scheme when compared to existing methods.

We used two 34671-D steganalytic feature sets, including
SRM [15] and its selection-channel version maxSRMd2 [16],
to evaluate security performance. The Fisher linear discrimi-
nant based ensemble classifier [19] was used to perform clas-
sification. For each steganographic scheme, we randomly s-
plit the image set into 5000 cover/stego pairs for training and
the rest for testing. The performance was evaluated by the
testing error defined as

PE = min
PFA

1

2
(PFA + PMD) , (20)

where PFA and PMD were the false-alarm and the missed-
detection probabilities, respectively. We repeated the random
split of the training and testing sets 10 times and reported the
averaged value PE .

4.2. Impact of the parameters

The high-pass filter has an impact on the performance. We
used several filters individually, including second-order hor-
izontal derivative (SH) filter, KB filter, KV filter, etc, which
were used in [15]. The experimental results are shown in Ta-
ble 1, and the results of MG are also included for comparison.
We can observe that SH and KB are the two best performing
filters. As a result, we used three filters, including SH filter,
second-order vertical derivative (SV) filter, and KB filter to-
gether, which are shown in Fig. 2. The resulting scheme is
denoted MGR∗. It can be found that the scheme with various
filters can improve the performance.

Table 3. The averaged elapsed time (in second) used in com-
puting FI for MiPOD and MGR.

Scheme MiPOD MGR

Elapsed time 0.4329 0.0542

The size of the h × h average filter L also has an im-
pact on the steganographic performance and it is determined
experimentally. Table 2 shows the performance of the pro-
posed MGR∗ against SRM under different filter size. It can
be observed that MGR∗ achieves the best performance when
h = 7. In the rest experiments, we use the 7× 7 average low-
pass filter as default. In the rest of the paper, we use MGR to
stand for MGR∗ incorporated L with h = 7.

4.3. Comparison to Existing Methods

We compare MGR with WOW, S-UNIWARD, HILL, and Mi-
POD against SRM and maxSRMd2 under different payloads.
Fig. 3 shows the results. We can observe that MGR out-
performs MiPOD and acts comparable to HILL against SR-
M, and outperforms HILL and acts comparable to MiPOD
against maxSRMd2.

Comparing MGR with MiPOD, the main difference is the
way to obtain FI. We randomly selected 1000 images to eval-
uate elapsed time of computing FI for both MiPOD and M-
GR under payload 0.4 bpp. The experiments were performed
with a computer with Intel(R) Xeon(R) CPU E5-2630 v2 @
2.60GHz and 32G memory. Averaged results are shown in
Table 3. It is worthy to note that the elapsed time of comput-
ing FI of MGR is significantly less than that of MiPOD.

5. CONCLUSION

In this paper, an extension of MG [11], called MRG, has
been proposed based on modeling image filtered residuals
with multivariate Gaussian distribution. Different from MG
which models image elements, MGR explicitly considers the
KL divergence in terms of image residuals, which are com-
monly used in steganalysis. It is not surprise to see that the
mathematically derived FI is related to both Gaussian vari-
ance and high-pass filter coefficients. In order to further im-
prove the performance, various filters can be employed in M-
GR by considering the maximum FI values. Experimental
results have shown that the statistical model built from resid-
ual domain gets better performance in resisting residual-based
steganalytic methods than its counterpart built from pixel do-
main, and achieves the best overall performance when com-
pared with HILL and MiPOD.

We note that fusing the FI values from different high-pass
filters is still performed in a heuristic manner. More insight-
ful investigation such as making regulation on the filter coef-
ficients should be done in the future work.
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[2] R. Böhme, Advanced Statistical Steganalysis, Springer
Berlin Heidelberg, 2010.

[3] B. Li, J. He, J. Huang, and Y. Q. Shi, “A survey on im-
age steganography and steganalysis,” Journal of Infor-
mation Hiding and Multimedia Signal Processing, vol.
2, no. 2, pp. 142–172, Apr. 2011.

[4] A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver,
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