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ABSTRACT

This paper investigates the use of recurrent neural networks
to secure PIN code based authentication on smartphones, in a
scenario where the user is invited to draw digits on the touch-
screen. From the sequence of successive positions of the users
finger on the touchscreen, a bidirectional recurrent neural net-
work computes a discriminative embedding in terms of writer
traits, carrying the contextual information of the written digit.
This allows to reject impostors who would have knowledge of
the PIN code. The neural network is trained to recognize both
users and digits of a training dataset. Evaluations are run on
two datasets of 43 and 33 users, respectively, absent from the
training dataset. Results show that when enrolling the users
on 4 examples of each digit, the Equal Error Rate reaches
4.9% for a 4-digit PIN code. Including digit value prediction
during training is key to achieve good performances.

Index Terms— behavioral biometrics, recurrent neural
network, writer verification, authentication.

1. INTRODUCTION

Smartphones are nowadays very popular devices. As such,
many companies offer services or applications requiring a se-
cure access. Authentication usually relies on a knowledge
factor, a secret, such as a password or PIN (Personal Iden-
tification Numbers) code. However, an impostor with the
knowledge of the secret can access the protected service [1].
Some accesses may be protected by a biometric sensor; how-
ever, sensors do not replace secrets: an impostor who can-
not authenticate through a biometric sensor will usually be
prompted for a secret after a few authentication failures.

To enhance security, behavioral biometrics is considered
as a new mean of authentication [2, 3, 4, 5, 6]. Recently, be-
havioral biometrics was used to enforce security challenges
such as password prompts, as a second authentication fac-
tor [7, 8, 9]. In [7], the authors proposed to enforce the se-
cret path security with an analysis of the drawing style. Using
a method based on Pearson correlation coefficients and Dy-
namic Time Warping (DTW), an Equal Error Rate (EER) of
17% was obtained on dataset of 15 users. [9] proposed a One-
Time-Password (OTP) scenario where users are invited to per-

form finger-drawn PIN codes on a touchscreen. In addition to
the validity of the code, the user is authenticated through the
way he/she interacts with the touchscreen. The method was
evaluated on 43 users, achieving 9.3% EER for a 4 distinct
digits PIN code, using feature selection and DTW.

In the field of behavioral biometrics, recurrent neural net-
works (RNNs) were explored in the last years [10, 11, 12].
RNNs are well adapted to model temporal sequences and
have been used with success for English and Chinese writer
identification [11], with 99% accuracy among 150 users, us-
ing a bidirectional RNN based on Long Short Term Memory
(LSTM) Cells [13]. In another domain, RNNs were used to
authenticate handwritten signatures [12]. In their work, the
authors proposed a siamese architecture based on RNNs to
compare pairs of signatures. On an evaluation dataset of 100
users, verification performances reach 5.5% EER, the system
being trained on 300 distinct users.

In this article, we propose to use RNNs for the task of
writer verification, in a finger-drawn PIN code authentication
scenario. The proposed approach is related to that of [11].
However, in our work, writer verification is performed on
single handwritten digits, acquired through a smartphone or
tablet touchscreen, instead of being done on paragraphs of
sentences written with a connected pen. Experiments are run
on the eBioDigit [9] dataset, completed by an internal dataset.
This article is structured as following. In a first section, we
present the authentication system and the use case. In the sec-
ond, we describe the proposed method, based on RNNs. The
third section is dedicated to the experiments, followed by a
discussion about the results.

2. AUTHENTICATION SYSTEM

The proposed authentication system is a smartphone applica-
tion where the user is asked to draw digits, one after the other.
To be able to authenticate himself/herself, the user has been
previously enrolled on the device on the 10 digits. The enroll-
ment phase consists in performing and storing 4 examples of
each handwritten digit in a local template database. During
the authentication phase, the user is asked to enter a PIN code
of 4 successive distinct digits. Authentication is performed
on the device itself, on the validity of the PIN code and on
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Fig. 1. Bidirectional recurrent neural network architecture.

the way the user writes the digits: if the writer traits are not
recognized, the user is rejected even if the code is valid.

To decide whether the user is genuine or an impostor, each
handwritten digit of the code is compared to those stored in
the template and a confidence score is computed. For a 4
digits PIN code, the 4 scores are averaged and compared to
a threshold. In this article, we focus on the writer verifica-
tion task: we only consider the case where all impostors have
knowledge of the PIN code of the genuine user, and where the
only way to reject them is to analyse their writer traits.

3. ARCHITECTURE

To model writer traits, we propose to use a representation ex-
tracted by a RNN [14]. RNNs are widely used for speech or
handwriting recognition, because they are designed to model
variable length sequences in a fixed size representation (a vec-
tor). Thus, sequences modeled by a RNN can be easily com-
pared through that representation.

When a user writes a digit, the smartphone collects a se-
quence of vectors τi = (xi, yi)i∈[1..N ], describing the posi-
tion of the finger on the touchscreen. xi and yi are the co-
ordinates of the finger on the touchscreen plan. The number
of collected points N is different for each sequence: its total
duration is variable and the sampling frequency of the touch-
screen is not fixed. In an approach similar to that of [11],
we transform that input data in a sequence S of strokes si =
(∆xi,∆yi)i∈[1..N−1], where ∆xi = xi+1 − xi and ∆yi =
yi+1 − yi. This makes the data independent of the absolute
position of the drawing on the screen, while being suitable to
represent its size and dynamics.

Here, we propose to estimate, through a recurrent neural
network, a non linear function f to extract a vector f(S),
which embeds the value of the handwritten digit and the
writer’s identity. In the neural network architecture, we force

Table 1. Datasets composition.
name eBioDigit [9] internal

device Samsung Samsung
Galaxy Note 10.1 Galaxy A8

type train eval train eval
users 50 43 29 33
sessions/user 2 1 2
digit/session 10× 4 10× 5

that vector to the unit sphere, so that different input sequences
can be compared with cosine similarity. For example, the sim-
ilarity between two stroke sequences S andQ is described in
equation 1.

sim(S,Q) =
f(S)f(Q)

‖f(S)‖‖f(S)‖
(1)

The network architecture is presented in figure 1. It is a
bidirectional RRN [15] composed of LSTM cells [13]. The
bidirectional structure is designed for the model to consider
both past and future elements of the input sequence. In the
forward (resp. backward) layer, the sequence is presented in
the chronological (resp. anti-chronological) order. The out-
puts of the forward and backward layers are averaged to form
the embedding.

For training only, the embedding layer is fully connected
to two distincts softmax layers: one for writer prediction, the
other for digit value prediction. The RNN is trained to rec-
ognize the value of the digit and the identity of each input
stroke sequence’s writer, by minimizing a cross entropy loss
function with gradient back-propagation [16]. The cost func-
tion is that of equation 2, where W represents the ensemble of
writers (w)w∈[1..W ] and D the ensemble of digits (d)d∈[1..D].
The operator 1[S∈w] equals 1 when Sk was written by w, 0
otherwise. 1[S∈d] works likewise for digit values. In this arti-
cle, D represents the digits from 0 to 9, but could correspond
to any form of symbol or graphical representation.

L(T ) = − 1

M

M∑
k=1

[
W∑

w=1

1[Sk∈w] log(pSk∈w)

+

D∑
d=1

1[Sk∈d] log(pSk∈d)

] (2)

Optimal parameters of the neural network are estimated
through exhaustive search and early stopping. The chosen
embedding dimension is of 1024, while the chosen optimizer
is Adam [17] and the RNN is implemented with Keras [18]
and Tensorflow [19]. Once the RNN has been trained, both
softmax layers are removed and the resulting network is only
used to extract handwritten digit embeddings. Embedding ex-
traction is performed: offline for evaluation, online in the con-
sidered authentication application (i.e. on the device itself).
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Table 2. System performances on various train/eval combinations.

# system train
train

eval
EER

sessions RNN trained with digit prediction without
count 1 digit 4 digits 1 digit 4 digits

1 [9]
eBioDigittrain 4000 eBioDigiteval

18.6 9.3 - -
2

proposed

15.1 6.5 20.9 11.3
3 internaleval 18.5 8.2 23.1 13.2
4 eBioDigittrain + internaltrain+eval 8 750 eBioDigiteval 12.5 4.9 18.0 9.9
5 eBioDigittrain+eval + internaltrain 8 890 internaleval 15.8 6.3 22.7 11.8

4. EXPERIMENTAL SETUP

4.1. Datasets

To evaluate authentication based on writer traits, we use a
train dataset to train the RNN. Afterwards, the RNN is used
as an embedding extractor and its performances are evaluated
on an eval dataset. Train and eval subsets are built from two
handwritten digits corpora: eBioDigit [9] and an internal cor-
pus. Those datasets contain drawings of handwritten digits,
with writer identity and digit value annotations. A drawing
consists in sequences of positions (x, y) of the users’ finger
on the touchscreen. Digits were either collected on a tablet
(eBioDigit) or a smartphone (internal). For a same user, there
can be 2 sessions of collection, which were at least 2 weeks
apart. A session contains 4 or 5 examples of the 10 digits,
depending on the dataset.

Each dataset is split into a train and an eval subset, which
contain distinct users. Zero mean and unit variance normal-
ization is applied to the ensemble of stroke sequences of each
dataset independently, so that data from both datasets can be
jointly used for training. Depending on the considered exper-
iment, when evaluation is performed on one of the two eval
subset (ie. eBioDigit of internal), the other one can be used
as additional data to train the RNN.

4.2. Evaluation protocol

For each user of the eval dataset, the first session of collected
digits is used to build an enrollment template, while the sec-
ond is used to simulate trials. Each sequence of strokes is
passed through the RNN and the template is composed of 4
examples per digit (ie. 4 embeddings per digit). Trials are
scored using a 1-nearest neighbor classifier. For a given trial,
its embedding is compared to those of the corresponding digit
in the template and the trial-template similarity score is the
cosine similarity between the trial embedding and the clos-
est template embedding. To evaluate the system, we distin-
guish genuine and impostor tests. A genuine (resp. impostor)
test consists in scoring a trial-template pair representing the
same (resp. a different) user. The system is evaluated with
the EER (the lower the better), computed over all possible
trial-template tests of the eval dataset.

We consider two authentication scenarios. The first (resp.
second) one consists in authenticating the user on one single

digit (resp. a 4 distinct digit PIN code). In the chosen authen-
tication scenarios, impostors do not have any a priori knowl-
edge of the genuine writer traits. They just know what digits
they have to enter to authenticate, as if they had stolen the
PIN code. A contrastive experiment consists in removing the
digit prediction layer during RNN training, to quantify how
this extra contextual information helps.

5. RESULTS

Table 2 shows EERs obtained for various experiments. Multi-
ple dataset combinations are used to train the neural network
and evaluate the system. Whatever the combination, no user is
present in both train and eval datasets. For example, in exper-
iment #3, the neural network was trained on a combination of
eBioDigittrain, eBioDigiteval and internaltrain datasets
and evaluated on internaleval. The table also shows the num-
ber of training sessions per experiment, and presents the re-
sults of the contrastive RNN training configuration, where it
is trained without the digit prediction layer. Finally, we report
the results of [9] (experiment #1 of the table), in comparable
experimental conditions.

5.1. Comparison with previous state of the art

In the experimental conditions of [9], we note that using
RNNs (exp. #2) outperforms the feature selection/DTW-
based method (exp. #1). The EER on a single digit is reduced
from 18.6% to 15.1%, while it reaches 6.5% for a 4 digits
PIN code, instead of 9.3%.

Our initial RNN design was similar to that of [11] and was
only trained to recognize writers, whatever the digit value.
The loss expression was reduced to the first term of equation
2. We wanted the RNN to model writer traits without provid-
ing any contextual information. The system’s results using
that RNN configuration are reported in the last two columns
of table 2. They show that without additional training data,
the RNN-based method only reaches an EER of 11.3% on 4
digits (exp. #2), 2% worse than the baseline of 9.3%. In-
cluding digit value prediction during RNN training proves to
be effective for all tested train/test configurations and gives
a 5.8% EER improvement for experiment #2 (from 11.3% to
6.5%). This shows that including contextual data helps the
RNN to model writer traits on short sequences of strokes.
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In the work of [11], results showed that the RNN needed
to be trained on word or sentence level sequences to effec-
tively recognize writers. In our work, we can only train the
system character by character, thus we cannot model writer
traits based on between-character or between-word strokes.
However, using contextual information such as the digit value
helps the RNN to work with short sequences, and this addi-
tion lowers the EER for the 4 train/eval tested configurations.

5.2. Volume of training data

For a given eval dataset, results show that the RNN bene-
fit from additional training data. For example, the EER on
eBioDigiteval is lowered when internaltrain+eval is addi-
tionally used for training, doubling the number of training
sessions (exp. # 4). On eBioDigiteval, the EER on a 4 digits
PIN code (resp. 1 digit) is reduced from 6.5% to 4.9% (resp.
from 15.1% to 12.5%).

When evaluating the system on internaleval, we note
that the system does not perform as efficiently as on the
eBioDigiteval dataset. Using eBioDigittrain only for train-
ing, the EER on 4 digits (resp. 1 digit) is 1.7% (resp. 3.4%)
higher (exp. #3). Performances obtained on internaleval
also benefit from additional training data, since the EER is
lowered to 6.3% when doubling the number of training ses-
sions (exp. #5). This gap of performances is probably due to
a mismatch between train and eval datasets. In experiment
#5, most of the train data is from eBioDigit (around 84% of
the train sessions, not shown in the table). Since both datasets
were collected on different devices, touchscreen sampling or
resolution can vary, even if we applied normalization.

Table 3. Performances per digit, whether examples of the
digit are included in the train dataset or not.

EER
digit ∈ train 6∈ train

0 15.3 17.0
1 14.5 15.1
2 17.4 17.0
3 15.2 18.0
4 13.4 12.2
5 12.5 12.8
6 16.9 18.6
7 12.5 12.8
8 12.5 13.8
9 13.0 13.4
avg 14.3 15.1

5.3. Expanding to other symbols

The proposed system is designed to authenticate users based
on handwritten digits. Building it relies on collecting anno-
tated data to train the RNN. When we collected our internal
data, it was acceptable for people to participate because it was
fast: performing 50 handwritten digits only takes a few min-
utes. When we were asked if the system would work for any

kind of characters or symbols, it became far less acceptable
to collect such data. To do so, it would require to collect new
symbols, while still being able to authenticate users on those.

To evaluate that aspect, we propose to evaluate the system
on a new contrastive experiment: the RNN is trained on 9 dig-
its only. We exclude the one we want to evaluate the system
on, as if it was a new symbol. The RNN will be used to ex-
tract embeddings for digits it has never seen during training.
The system is trained on eBioDigittrain and evaluated on
eBioDigiteval. Results are presented in table 3. In the first
column, the RNN is trained in the same configuration of that
of experiment #2 of table 2, but with 10% removed sessions.
In the second one, we remove all examples of a specified digit
from the training dataset. In both cases, the total number of
training sessions per writer is identical.

Results show that the system usually performs better
when the evaluated digit is included in the train dataset, ex-
cept for digits 2 and 4. In average, we note a 0.8% EER gap
between the two conditions: the system is still able to perform
correctly on unseen symbols, the EER being only degraded of
2.8% in the worst case (digit 3). This shows that authenticat-
ing users on unseen digits or symbols is possible: the RNN is
able to model writer traits that are common between symbols.

6. CONCLUSIONS

In this article, we proposed a novel method to help secur-
ing handwritten PIN codes on smartphones. We designed
a LSTM-cell based bidirectional RNN to encode any hand-
written digit in a fixed compact representation, discrimina-
tive in terms of writer traits and carrying the contextual in-
formation of the written digit. The RNN is trained on an an-
notated dataset of smartphone users, whose handwritten dig-
its were collected in two sessions to account for the within-
writer/between-session variability. Once trained, The trained
network is then used to simulate an authentication scenario:
each handwritten digit can be compared to any other through
cosine similarity between corresponding embeddings.

Experiments were run on two datasets from two distinct
collection campaigns, and show that the proposed approach
achieves 4.9% EER on the eBioDigit dataset. It outperforms
state of the art, which was of 9.3% with a DTW-based ap-
proach. This gain is due both to the method itself (2.8%)
and the use of additional data for RNN training (additional
1.6%). Including digit value prediction during training is key
to achieve good performances, while having shown that the
system is still able to discriminate writers on unseen symbols.

The authentication scenario simulated in our experiments
considers that the impostors do not have any a priori knowl-
edge of the way users write on their phone. Further work
could include an over the shoulder attack scenario, where an
impostor would try to mimic the way the user writes its digits.
It could also be beneficial to use additional data sources such
as finger pressure, accelerometer or gyroscope.
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