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ABSTRACT

Biometric system security requires cryptographic protec-
tion of sample data under certain circumstances. We as-
sess low complexity selective encryption schemes applied to
JPEG2000 compressed iris data by conducting iris recogni-
tion on the selectively encrypted data. This paper specifically
compares the effects of a recently proposed approach, i.e.
applying selective encryption to normalised texture data, to
encrypting classical sample data. We assess achieved pro-
tection level as well as computational cost of the considered
schemes, and particularly highlight the role of segmentation
in obtaining surprising results.

Index Terms— Iris sample protection, selective encryp-
tion, JPEG2000, iris recognition

1. INTRODUCTION

The International Organisation for Standardisation (ISO)
specifies biometric data to be also recorded and stored in
(raw) image form (ISO/IEC FDIS 19794), not only in ex-
tracted templates (e.g. minutiae-lists or iris-codes). The
certainly most relevant standard for compressing such data is
JPEG2000, suggested for (lossy) compression of iris sample
images in the ISO/IEC 19794 standard suite on Biometric
Data Interchange Formats. As these data are highly privacy
sensitive, cryptographic protection for (long-term) storage
and additionally e.g. for transmission between sensor and
authentication module is required.

As this application context does not require protected
matching (as requested from template protection schemes), it
allows the employment of classical cryptographic techniques.

In this paper we investigate lightweight encryption schemes
for JPEG2000 compressed iris sample data, suited for mobile
and/or low-power environments, based on selective bitstream
protection applied to either sample data or normalised iris
texture. While the latter approach suggested recently [1] is
appealing due to the low amount of data to be compressed
and protected, it also exhibits certain disadvantages which
will be discussed and evaluated.

This work has been partially supported by the Austrian Science Fund,
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Section 2 introduces principles of encrypting JPEG2000
data and specifically describes the approaches tailored for iris
data as proposed in this paper. Section 3 describes conducted
experiments, where we specifically assess the security of the
proposed encryption schemes by applying four different iris
recognition schemes to the (attacked) encrypted data. The
role of iris segmentation on protected data is particularly high-
lighted. Section 4 presents the conclusions of this paper.

2. EFFICIENT ENCRYPTION OF IRIS DATA

2.1. Iris Sample Data Types

The iris recognition processing chain typically consist of sev-
eral stages, the first of which is iris localisation also termed
“iris segmentation” where the pupillar and limbic boundaries
of iris texture are determined.

In the second step the localised iris is normalised. The
reasons for this are differences in image acquisition, like the
varying size of irises caused by changes of the camera-to-
eye distance. The area between the two boundary-curves
is mapped into a rectangle texture with fixed size for com-
pensating such deformations using a coordinate-transform
from Cartesian-coordinates to polar-coordinates also de-
noted as “rubber sheet-transform” (see Fig. 2.a). The fi-
nal pre-processing step enhances contrast and compensates
for illumination variations by applying e.g. CLAHE to the
normalised texture.

The experiments are done on the CASIA V3 Interval
dataset. The original samples have a resolution of 320 × 280
pixels with 8bpp grayscale (NIR data), while the normalised
iris texture derived using USITv21 (University of Salzburg
Iris Toolkit v2.0.x [2, 3]) has a resolution of 512 × 64 pixels
with identical bitdepth, thus the pixel count is reduced by a
factor of 2.73 when considering normalised iris texture. Note
that these two types of iris data correspond to standardised iris
images (IREX records) as defined by the NIST Iris Exchange
(IREX I http://iris.nist.gov/irex/) program. In
particular, original sample data corresponds to IREX record
kind 1 or 3, while the normalised texture corresponds to
record kind 16 (which has been later abandoned by NIST).

1http://www.wavelab.at/sources/USIT/
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The observation of reduced data rate for normalised iris
textures motivates the employment of this sample data repre-
sentation when low computational cost is aimed for.

Table 1 compares the filesize of the two different data
types after lossless JPEG2000 compression, i.e. comparing
the amount of data subjected to encryption in case of full pro-
tection is being applied.

Table 1: Filesize in byte after JPEG2000 lossless compres-
sion (CASIA V3 Interval).

Data ∅ σ range
original sample 42501.80 3874.06 [27402,51998]
normalised texture 15471.84 1119.22 [10408,19803]

We observe that the relation between original sample
compressed file size and normalised texture compressed file
size is preserved from the case of looking at image dimen-
sions only, and also the file size variability is significantly
lower for normalised textures (which is beneficial for worst
case planning). Thus, encrypting normalised textures looks
like a pretty good idea as proposed in [1].

2.2. Selective JPEG2000 Encryption Approaches and Se-
curity Assessment

For JPEG2000, [4] provides a comprehensive survey of en-
cryption schemes. In our target application context, only bit-
stream oriented techniques and format compliant ones (to en-
able security assessment of encrypted data) are appropriate.
We apply a corresponding scheme introduced in the context
of JPSEC [5]).

In a series of papers (i.e. [6, 7, 8]) we have defined and
analysed different ways how to apply encryption to differ-
ent parts of a fingerprint-image JPEG2000 codestream. From
these techniques, we adopt “Absolute Encryption” (encryp-
tion is applied to one single chunk of data right at the begin of
the codestream [6]) as this has proven to be the most sensible
approach due to the progressive nature (most important infor-
mation is concentrated at the start of the bitstream) and em-
beddedness of the JPEG2000 bitstream structure [7, 8]. This
approach is thus termed “begin” in some plots in this work.

When assessing the security of format compliantly en-
crypted visual data, the data can simply be decoded with the
encrypted parts (called “direct decoding”). The encrypted
parts introduce noise-type distortions into the data which kind
of overlay the visual information still present in the data (see
Figs. 1 and 2 left side of each pair). An informed attacker can
do much better by removing the encrypted parts before decod-
ing and replacing them by suited data minimising error met-
rics. This can be done most efficiently using codec specific
error concealment tools, which treat encrypted data like any
type of bitstream error (“error concealment attack”). As these
tools have been developed by JPEG2000 specialists it is ques-
tionable if an attacker might do any better. Thus, any serious

security analysis needs to consider encrypted imagery being
attacked using this error concealment approach at least. The
JJ2000 version used in the experiments includes the patches
and enhancements to JPEG2000 error concealment provided
by [9, 7], and results obtained by error concealment are de-
noted by “rep” (for replacement) in the result Figs. 6 and 7.

In Figs. 1 and 2 we provide visual examples for encrypted
iris sample data and normalised texture, respectively. The
left-sided image of each pair is directly decoded, while for
the right-sided image error-concealment decoding is done.

⇒

(a) 1% Absolute encryption

⇒

(b) 5% Absolute encryption

Fig. 1: Comparison of encrypted iris sample images (direct
decoding) to error-concealment decoding.

When comparing the obtained data after direct and error-
concealment decoding, respectively, it gets immediately
clear that security judgement based on direct reconstruc-
tion severely overestimates security (as the texture data still
present is hidden by image noise). After error-concealment
decoding most of the encryption noise is removed and in
many cases iris-texture related structures are exhibited.

⇒
(a) normalised texture original and CLAHE enhanced

⇒
(b) 1% Absolute encryption

⇒
(c) 5% Absolute encryption

Fig. 2: Normalised texture: Original (a) and comparison of
encrypted normalised textures (direct decoding) with error-
concealment decoding (b) & (c).

In this work, actual security assessment is done by apply-
ing iris recognition schemes to the protected data (either
after direct reconstruction or after having applied error-
concealment decoding) to verify if the protection is suffi-
ciently strong to prevent the use of the encrypted iris data in
an automated recognition context.

3. EXPERIMENTS

3.1. Experimental Settings
All experiments are based on images taken from the CASIA
V3 Interval iris image dataset consisting of 2647 NIR im-
ages from 395 different classes. Images, no matter if sam-
ple data or normalised texture, are compressed into lossless
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JPEG2000 format using JJ2000 in resolution progressive or-
dering, using a single quality layer. The JPEG2000 bitstreams
are encrypted by varying the amount of encrypted data and
starting right from the bitstream start. Subsequently, data are
either directly decoded or decoded with enabled error con-
cealment with the JJ2000 variant mentioned [9]. Segmenta-
tion is performed using a method based on contrast-adjusted
Hough transform (caht) extracting circular boundary curves
proposed by [2].

For feature extraction and matching, we employ four
techniques very different wrt. the dominant analysis orien-
tation and the extraction domain considered, respectively (as
different techniques might react in distinct manner to encryp-
tion artefacts): “Ma” [10], “Masek” [11], “Ko” [12], and
“Monro” [13]. For a detailed description of our implemen-
tation of preprocessing, feature extraction, and matching see
[2, 3]. All implementations are available in USITv2.

Iris recognition is then conducted in three variants: (i) di-
rectly applied to encrypted normalised texture (as suggested
as low-cost encryption approach in [1]), (ii) applied to nor-
malised texture which is generated from the encrypted sam-
ple by applying segmentation and normalisation to it (termed
“classical segmentation”) and (iii) applied to normalised tex-
ture generated from the encrypted sample when providing
segmentation parameters computed on unprotected imagery
and applied to the encrypted samples, and subsequent normal-
isation (termed “guided segmentation”). We consider both
(ii) and (iii) to isolate the effect of segmentation applied to
encrypted imagery as (iii) is not influenced by segmentation
errors on encrypted data. While (i) and (iii) look pretty simi-
lar at first sight, the difference is that normalisation (including
interpolation) is applied to encrypted data (and thus artefacts
should propagate) in (iii) while in (i), encryption is applied to
the already normalised data.

Error analysis is conducted by ROC analysis of iris recog-
nition done in verification mode using the FVC2004 proto-
cols [14], presenting EER always matching plaintext gallery
images to encrypted probe images. Obviously, higher EER
corresponds to better data protection.
3.2. Experimental Results
In the three following plots, we compare a direct reconstruc-
tion (left plot) to applying error-concealment during decoding
the encrypted data (right plot).

Fig. 3, showing the results of applying recognition to
the encrypted normalised texture, drastically illustrates that
there is indeed a significant difference in the security assess-
ment between considering direct reconstruction and error-
concealment (an informed attacker in the latter case). The
differences in recognition performance on plaintext data (Ma
and Masek are clearly superior to Monro and Ko, respec-
tively, see the values at 0% encryption on the x-axis) are
clearly reflected also in the EER results on selectively pro-
tected data when error-concealment decoding is done (right
plot). Results indicate that decent protection under Ma recog-

nition is achieved after having encrypted at least 25% of the
packet data. Also with Masek recognition, encrypting 10%
of the packet data does not yet lead to the desired protection
level (EER is still down to 25%). On the other hand, under
Monro and Ko recognition, EER is up to 42% - 44% after
having encrypted 4% of the packet data only.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  2  4  6  8  10  12  14  16  18  20  22  24  26

E
E

R
 (

%
)

Encryption (%)

EER begin (38105 tests)

Masek
Ma

Monro
Ko

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  2  4  6  8  10  12  14  16  18  20  22  24  26

E
E

R
 (

%
)

Encryption (%)

EER begin with concealment (38105 tests)

Masek
Ma

Monro
Ko

Fig. 3: Absolute encryption of normalised texture: EER using
direct reconstruction and with error-concealment.

When comparing these results to those achieved after di-
rect reconstruction (left plot), we see a very different picture.
Results suggest that for all recognition types an encryption of
5% of the packet data is sufficient to result in more than 45%
EER (more than 40% for Ma), thus indicating sufficiently
secured data. These results drastically underline the impor-
tance of considering informed attackers to prevent an over-
optimistic security assessment is resulting from this plot.

A very different picture is obtained when considering the
case of applying recognition to encrypting sample data, i.e.
when segmentation is applied to the encrypted data before
normalisation (see Fig. 4). For both direct reconstruction
and error-concealment application, respectively, EER is up to
50% already when encrypting 1% of the bitstream packet data
only. This is a strong and somewhat surprising result.
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Fig. 4: Absolute encryption of samples with classical seg-
mentation: EER using direct reconstruction and with error-
concealment.

Note that encrypting this small amount of sample data
roughly corresponds to encrypting 2.75% of normalised tex-
tures. When relating this to the normalised texture encryption
results in Fig. 3, it is evident that encrypting sample data is
the much better choice (as decent protection is achieved by
encrypting clearly more than 10% of these data).

The guided segmentation scenario is meant to shed light
on this result by excluding segmentation as a cause for intro-
duced errors (as the segmentation result obtained on clear data
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is applied to the encrypted sample data to rule out segmenta-
tion errors caused by encryption). The results are shown in
Fig. 5. It is obvious, that the achieved protection is much
weaker as compared to the previous case. Consequently, the
high error rates observed in the classical segmentation setting
are due to segmentation errors or probably failures.

When comparing encryption of normalised textures and
encryption of samples with guided segmentation we notice
better protection for the former case as high error rates for Ko
and Monro are seen for a lower percentage of data encrypted
(in the error-concealment case), and Ma in direct reconstruc-
tion achieves high EER at a later stage as compared to en-
crypting normalised textures.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  2  4  6  8  10  12  14  16  18  20  22  24  26

E
E

R
 (

%
)

Encryption (%)

EER begin (38558 tests)

Masek
Ma

Monro
Ko

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  2  4  6  8  10  12  14  16  18  20  22  24  26

E
E

R
 (

%
)

Encryption (%)

EER begin with concealment (38558 tests)

Masek
Ma

Monro
Ko

Fig. 5: Absolute encryption of samples with guided seg-
mentation: EER using direct reconstruction and with error-
concealment.

Also Masek and Ma (when considered under error-
concealment reconstruction) achieve EER of 25% and 15%
already when encrypting 5% of the bitstream in the case
of encrypting normalised textures, while at this encryption
amount the guided segmentation approach on encrypted sam-
ples delivers much lower EER. Note that this is specifically
remarkable, as the absolute amount of data encrypted is a
factor of over 2.5 higher for the encryption of sample data.
Obviously, the application of normalisation including inter-
polation to encrypted data as done in the guided segmentation
approach weakens the protection.

Finally we want to answer the question why the applica-
tion of segmentation to encrypted samples leads to the ob-
served superior protection properties. Fig. 6 displays the de-
viation of the centers of the detected boundary circles as well
as the observed difference in radii magnitude for increasing
encryption strength.
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Fig. 6: Averaged deviation of center location and radii in di-
rect reconstruction and error-concealment application.

For direct reconstruction we observe a complete seg-
mentation disaster in terms of center displacement, but also

for error-concealment application more than 10 pixels dis-
placement are seen already when encrypting 1% of packet
data, rising substantially for more than 5% encryption. For
the radii, we observe the interesting effects that (i) the inner
(pupil boundary) radius is more stable and (ii) that error-
concealment reconstruction is worse compared to direct
reconstruction. (i) does not come as a big surprise as the
contrast of the pupil boundary is higher compared to the lim-
bic one and (ii) might be explained by the smoothing involved
in error concealment that probably makes boundary detection
more difficult.

A strange phenomenon is the saturation and even decrease
of the radii deviation for increasing encryption strength.
However this has to be taken with care as shown in Fig. 7
(right), which illustrates the growing number of complete
failures in circle detection for increasing encryption strength,
in particular under error concealment. For direct reconstruc-
tions, the failure rate is much lower. This of course blurs the
results on radii deviation and center displacement.
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Fig. 7: Overlapping area and boundary detection failures.

Finally the left plot in Fig. 7 shows the percentage of pix-
els shared between iris texture area when segmenting plain-
text data and when segmenting encrypted sample data, re-
spectively. The rather strange shape of the error concealment
curve can be also attributed to the increasing number of com-
plete segmentation failures. In any case, the low extent of
overlap explains the very poor recognition results.

4. CONCLUSION

Although the amount of data to be compressed and encrypted
when normalised texture is processed is much lower, it is by
far more effective to partially encrypt iris sample data. It turns
out that segmentation severely fails on encrypted sample data
leading to proper protection when encrypting only 1% of the
JPEG2000 packet data. Results also indicate that these find-
ings do hardly depend on the employed recognition scheme,
while for normalised texture encryption the resulting protec-
tion strength highly depends on the actual recognition scheme
applied to the encrypted data. These results are in accordance
with earlier findings in that segmentation is rather sensitive to
image distortions like compression artefacts [15] and strongly
determines recognition performance [16].

Based on these results, we have to reconsider earlier rec-
ommendations to apply selective JPEG2000 encryption to
normalised textures [1]. The impact of applying different
types of segmentation schemes is subject to future work.
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