
CLEANING ADVERSARIAL PERTURBATIONS VIA RESIDUAL GENERATIVE NETWORK 

FOR FACE VERIFICATION 
 

Yuying Su, Guangling Sun, Weiqi Fan, Xiaofeng Lu, Zhi Liu 
 

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China  
 

ABSTRACT 
 

Deep neural networks (DNNs) have recently achieved 

impressive performances on various applications. However, 

recent researches show that DNNs are vulnerable to 

adversarial perturbations injected into input samples. In this 

paper, we investigate a defense method for face verification: 

a deep residual generative network (ResGN) is learned to 

clean adversarial perturbations. We propose a novel training 

framework composed of ResGN, pre-trained VGG-Face 

network and FaceNet network. The parameters of ResGN are 

optimized by minimizing a joint loss consisting of a pixel loss, 

a texture loss and a verification loss, in which they measure 

content errors, subjective visual perception errors and 

verification task errors between cleaned image and legitimate 

image respectively. Specially, the latter two are provided by 

VGG-Face and FaceNet respectively and have essential 

contributions for improving verification performance of 

cleaned image. Empirical experiment results validate the 

effectiveness of the proposed defense method on the Labeled 

Faces in the Wild (LFW) benchmark dataset. 
 

Index Terms— Deep residual generative network, Face 

verification, Adversarial perturbations, Joint loss 
 

1. INTRODUCTION 
 
Nowadays, deep neural networks (DNNs) have achieved 

impressive performances on various applications, such as 

computer vision, speech processing, natural language 

processing. However, recent investigations show that DNNs 

are fragile and can easily be confused by adversarial 

examples which are contaminated by elaborately designed 

perturbations [1]. More seriously, the adversarial examples 

even can pose real threats for physical world systems [2,3]. 

Although plenty of defensive techniques have been 

developed [4], making DNNs robust against adversarial 

examples is still an important and challenging problem. 

Facial analysis system is also vulnerable to adversarial 

attacks. Mahmood Sharif et al [5] developed a physically 

realizable and inconspicuous attack through printing a pair of 

eyeglass frames. When worn by the attacker, the eyeglasses 

allow her to evade identification or to impersonate another 

individual. The authors further designed an adversarial 

generative net that outputs a physically realizable attack 

instance [6]. Rozsa et al. [7,8] generated adversarial examples 

using Fast Flip-ping Attribute (FFA) technique to change the 

results of facial attribute recognition so as to explore the 

stability of multiple deep learning approaches. Mirjalili and 

Ross [9] proposed a mechanism that perturbs a face image 

such that its gender attribute decided by a gender classifier 

was modified whereas its extra biometric information was 

retained. Shen et al. [10] generated adversarial examples for 

certain face image which can have high attractiveness scores 

but low subjective scores in the face attractiveness evaluation 

using deep neural network. Yukun Ma et al. [11] combined 

the minimum disturbance dimensions and visual 

concentration in order to yield the adversarial examples for 

face-spoofing detection.  

In this paper, we attempt to design a strategy towards 

cleaning adversarial perturbations for defending face 

verification system. Specifically, we propose a framework 

which learns a deep residual generative network (ResGN) 

that completes adversarial perturbation cleaning task. The 

work most related with ours is APE-GAN [12] which used a 

typical generative adversarial network (GAN) [13] 

architecture. The generative network was learned to eliminate 

perturbation and the discriminator network was learned to 

improve the visual quality of the generated image. Instead of 

discriminator network, we use two pre-trained networks, 

VGG-Face and FaceNet to aid the ResGN training, which are 

illustrated in Fig.1. During training, only ResGN is learned 

and the two pre-trained networks provide feedbacks to 

improve the performance of the cleaned images. The 

optimization is to minimize a joint loss function including a 

pixel loss, a texture loss and a verification loss. For a pair of 

cleaned and legitimate images, the three losses measure 

content errors, subjective visual perception errors using pre-

trained VGG-Face [14] and verification results errors using 

pre-trained FaceNet [15] respectively. 

We summarize our contributions as follows:  

1 We propose a novel training framework to learn 

ResGN, in which ResGN is used to clean adversarial 

perturbations.  

2 We present a joint of three losses to optimize ResGN. 

In addition to a pixel loss, two pre-trained networks, VGG-

Face and FaceNet aid the learning of ResGN by providing a 

texture loss and a verification loss.  

3 We conduct extensive experiments to validate the 

effectiveness of the proposed method on the Labeled Faces in 

the Wild (LFW) benchmark dataset [16]. 
 

2. GENERATING ADVERSARIAL EXAMPLES 
 
2.1. Fast Gradient Sign Method  
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In this paper, we utilized Fast Gradient Sign Method (FGSM) 

[17] to craft adversarial examples for face verification. Given 

an input image 𝒙, the adversarial example 𝒙𝑎𝑑𝑣 is obtained as 

follows: 

𝒙𝑎𝑑𝑣 = 𝒙+ 𝜖 ∙ sign(∇𝒥(ℎ(𝒙),𝑦𝑔𝑡)), (1) 

where ℎ(𝒙) is a classification result on a given input image 𝒙 

determined by a target network, 𝑦𝑔𝑡  is the Ground Truth of 𝒙, 

∇𝒥(. , . ) denotes the gradient of loss function 𝒥(. , . ) and 𝜖 

controls the amount of adversarial perturbations.  
 
2.2 Adversarial examples for face verification 
 
Given pairs of facial images labeled ‘same person’ or ‘not 

same person’, a face verification system will learn how to 

classify them during training; given a pair of facial images, 

the trained face verification system will determine whether 

the pair of facial images is ‘same person’ or ‘not same person’ 

during inference. Obviously, adversarial facial images can 

cause the verification system to output an incorrect 

verification result during inference. Dodging and 

impersonation are two types of attacks: given an input facial 

image, dodging intends to make it identified as any one 

different from its genuine identity; impersonation intends to 

make it identified as a specified identity. 

Bruno López [18] released codes to craft adversarial 

examples using FGSM and FaceNet as target network. Given 

an input image and a reference image, if the two facial images 

are from the same person, the 𝑦𝑔𝑡  in Eq. (1) is [1,0] ; 

otherwise, the 𝑦𝑔𝑡  is [0,1] . Both the input image and the 

reference image are fed into FaceNet to obtain embeddings. 

The Euclidean distance between the two embeddings is 

transformed to a score as follows: 

𝑠𝑐𝑜𝑟𝑒 =

{
 

 0.5 +
(𝑑 − 𝜂) × 0.5

4 − 𝜂
0.5 × 𝑑

𝜂

,   𝑑 > 𝜂
,   𝑑 < 𝜂

 (2) 

where 𝑑  is the Euclidean distance between the two 

embeddings, 𝜂 is the threshold value. And then h(x) is formed 

as [1 − 𝑠𝑐𝑜𝑟𝑒, 𝑠𝑐𝑜𝑟𝑒]𝑇 . The threshold 𝜂 is set 1.1 which 

can correctly classify every pair from [14]. After above 

mentioned conversions, both dodging and impersonation 

attacks can utilize Eq. (1) to produce adversarial examples for 

face verification. 
 

3. PROPOSED FRAMEWORK 
 
The training framework contains three networks, namely the 

ResGN, pre-trained VGG-Face and pre-trained FaceNet. 

During training, only ResGN is learned. As auxiliary 

networks, VGG-Face and FaceNet provide addition 

information to boost the cleaned image performance. 

Specifically, in addition to pixel loss evaluating the content 

errors, texture loss evaluating visual quality errors is provided 

by VGG-Face and verification loss evaluating task errors is 

provided by FaceNet. The three losses are jointly optimized 

to learn the ResGN. For the proposed training framework, its 

advantage over the GAN is that the training algorithm is more 

efficient and stable due to the ResGN learning alone. In 

addition, FaceNet can help the ResGN learn towards 

obtaining better verification performance. The three networks’ 

components and the optimization algorithm are discussed in 

following subsections. 
 
3.1. Residual generative network 
 
Inspired by the successful application in super-resolution 

reconstruction [19], the ResGN is designed as shown in Fig.1 

(a). It contains 24 residual blocks and all blocks have an 

identical layout. Each residual block has two convolutional 

layers with small 3×3 kernels and 64 feature maps. Batch-

normalization layers and ReLU are followed by 

convolutional layer. The strategy of skip-connections is also 

used in this network. This network is trained to clean the 

adversarial images. 
 
3.2. VGG-Face  
 
The VGG-Face [14] is trained using 2.6M facial images of 

2622 unique individuals. As Fig.1 (b) illustrates, the network 

contains five convolutional blocks, three fully connected 

layers and a softmax layer. Each convolutional block 

comprises linear operators followed by one or more non-

linear layers, such as ReLU or max pooling. A stack of 

convolutional layers is followed by three fully connected 

Fig.1:  The proposed training framework for ResGN. The parameters of ResGN are optimized by minimizing a joint loss consisting of a 

pixel loss, a texture loss and a verification loss. Given an adversarial image, ResGN will output the cleaned image, the pixel loss is calculated 

using the cleaned image and corresponding legitimate image. Similarly, the two images are both fed into VGG-Face and FaceNet to calculate 

the texture loss and the verification loss respectively. A weighted summation of the three losses is the joint loss. Corresponding number of 

feature maps (n), kernel size (k) and stride (s) are marked for each convolutional layer in (a). 
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layers. We use 4096 dimensions feature maps obtained by the 

second fully connected layer for calculating the texture loss. 
 
3.3. FaceNet 
 
Schroff et al. [15] proposed FaceNet, which achieved the 

state-of-the-art face verification performance with 128 

embedding dimensions. As illustrated in Fig.1(c), FaceNet 

includes a batch input layer and a deep convolutional network 

followed by 𝐿2  normalization and outputs embedding as 

feature vectors. The network is trained by minimizing a triplet 

loss. In our work, we choose the FaceNet based on Inception 

Resnet V1 architecture and is trained using the MS-Celeb-1M 

database. The Euclidean distance of embeddings is used to 

calculate the verification loss for face verification task. 
 
3.4. Optimization 
 
To optimize the ResGN, we present an optimization 

formulation towards minimizing a joint loss consisting of 

pixel loss, texture loss and verification loss. They essentially 

evaluate the discrepancy between legitimate image and 

cleaned image from three aspects including content, visual 

perception and ultimate verification accuracy. Consequently, 

minimizing the joint loss leads to preserving the content of 

the legitimate image as much as possible, obtaining a high 

visual quality as the legitimate image, and achieving a 

verification performance on a par with legitimate image. We 

use 𝐼𝐶  and 𝐼𝐿  to denote cleaned image output by ResGN and 

legitimate image respectively. 

The pixel loss ℒ𝑝𝑖𝑥𝑒𝑙 measures content errors between 𝐼𝐶  

and 𝐼𝐿  and the loss is calculated as follows: 

ℒ𝑝𝑖𝑥𝑒𝑙 =
1

𝑁𝑝
∑ (𝑪𝑗

𝐼𝐶 − 𝑪𝑗
𝐼𝐿)2

𝑁𝑝

𝑗=1
, (3) 

where  𝑁𝑝  is the total number of pixels in each 

image.𝑪𝑗
𝐼𝐶 𝑎𝑛𝑑 𝑪𝑗

𝐼𝐿  denote the color of 𝑗th pixel in RGB space 

corresponding to 𝐼𝐶  and 𝐼𝐿  respectively. 

The texture loss ℒ𝑡𝑒𝑥𝑡𝑢𝑟𝑒 measures subjective visual 

perception errors between 𝐼𝐶  and 𝐼𝐿  and the loss is calculated 

as follows: 

ℒ𝑡𝑒𝑥𝑡𝑢𝑟𝑒 =
1

𝑁𝑡
∑ (ℱ𝑗

𝐼𝐶 − ℱ𝑗
𝐼𝐿)2

𝑁𝑡

𝑗=1
, (4) 

where 𝓕
𝐼𝐶 ∈ ℛ𝑁𝑡 and  𝓕

𝐼𝐿 ∈ ℛ𝑁𝑡  denote the feature maps of 

𝐼𝐶and 𝐼𝐿 ,which are available from the second fully connected 

layer of VGG-Face. 𝑁𝑡 is the dimension of the feature map 

and equals to the node number of the second fully connected 

layer. 

We also consider verification loss ℒ𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 to 

measure verification task errors for 𝐼𝐶 and 𝐼𝐿 . The loss 

depends on FaceNet and is calculated as follows: 
ℒ𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = −𝑙𝑜𝑔(1 − 𝑠𝑐𝑜𝑟𝑒), (5) 

where score is computed using Eq. (2). The ‘𝑑’ in Eq. (2) 

refers to the Euclidean distance between two embeddings of 

cleaned image and legitimate image. The verification loss 

definition indicates that the verification result for cleaned 

image and legitimate image is expected to be the same person 

irrespective of it is dodging attack or impersonation attack.   

Finally, a joint loss function is defined as a weighted 

summation of the three losses: 
ℒ𝑗𝑜𝑖𝑛𝑡 = ℒ𝑝𝑖𝑥𝑒𝑙 + 10

−8 ∙ ℒ𝑡𝑒𝑥𝑡𝑢𝑟𝑒 + 10
−3 ∙ ℒ𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛. (6) 

As hyper-parameters, the weights in Eq. (6) are set according 

to the training results. 

The training process of ResGN is summarized in 

Algorithm 1. 

Algorithm 1: Optimization of ResGN 

Input: pairs of adversarial and legitimate images (training set) 

Parameter: 𝑛: batch number, m: batch size,  𝑁: iteration number  

Separate training set into n batches of size m  

for  𝑘 = 1,⋯ , 𝑁  do 

for 𝑖 = 1,⋯ , 𝑛 do 

  for 𝑗 = 1,⋯ , 𝑚 do 

-Calculate the pixel loss ℒ𝑝𝑖𝑥𝑒𝑙
(𝑖,𝑗)

 using Eq. (3) 

-Calculate the texture loss  ℒ𝑡𝑒𝑥𝑡𝑢𝑟𝑒
(𝑖,𝑗)

 using Eq. (4) 

-Calculate the verification loss ℒ𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
(𝑖,𝑗)

 using Eq. (5) 

-Calculate the joint loss function ℒ𝑗𝑜𝑖𝑛𝑡
(𝑖,𝑗)

 using Eq. (6) 

 end 
 

Update the ResGN by descending its stochastic gradient: 

                                         ∇𝜃
1

𝑚
∑  ℒ𝑗𝑜𝑖𝑛𝑡

(𝑖,𝑗)𝑚
𝑗=1  

where 𝜃 represents the weights and biases of ResGN. 

end 

end 
 

4. EXPERIMENTS 
 
4.1 Target network and dataset  
 
FaceNet is taken as target network because of its significant 

performance on face verification. We choose the LFW 

benchmark dataset in all experiments. First, the correctly 

verified examples by FaceNet are selected. Then we use the 

codes released by [18] for implementing FGSM attack to 

generate adversarial examples. The attacking intensity ϵ  is 

0.03. From all the generated examples, a total of 4000 

adversarial examples including 2000 dodging examples and 

2000 impersonation examples compose training set. And a 

total of 2580 adversarial examples including 1286 dodging 

examples and 1294 impersonation examples compose testing 

set.  
 
4.2 Parameter setting 
 
We use TensorFlow [20] and a NVIDIA TITAN X GPU to 

train and test ResGN. We use Adam optimizer [21] during 

optimization. The initial learning rate is 0.0001 and 0.9 is the 

learning rate decay. The batch size m is 16. The iteration 

number 𝑁 is 1000. The input image size is 160*160*3.  
 
4.3 Experimental results 
 
4.3.1 Experiment on verification performance of cleaned 

image 

To check and verify the advantage of the joint loss, we learn 

seven ResGN models optimized with three single loss, three 

two losses combinations and the joint loss (see the left most 

column in table 1). During testing, any input first is processed 
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by ResGN and then is fed into the target network, namely 

FaceNet, to complete verification. The verification accuracy 

of 1286 dodging examples and 1294 impersonation examples 

cleaned by seven ResGN models are listed in table 1.  

To further confirm the effectiveness of our proposed 

defense method, we compare it with Randomization [22]. 
The results in table 1 suggest the ResGN is superior to 

Randomization with a large margin on two types of 

adversarial examples and also performs better than 

Randomization on legitimate examples. 
 
Tabel 1: The verification accuracy of original input examples and 

cleaned examples using the ResGN optimized with seven losses and 

Randomization. The best results are emphasized in bold. (%) 

Type 

Loss 
Dodging Impersonation Legitimate 

pixel 99.16 99.68 90.52 

texture 99.06 99.67 97.91 

verification 88.36 95.31 98.31 

pixel+ 

texture 
99.25 99.82 97.86 

pixel+ 

verification 
99.26 99.83 98.70 

texture+ 

verification 
95.99 97.57 98.83 

joint 99.45 99.92 99.18 

Randomization 65.28 61.81 97.65 

Original input 

Example 
0.84 43.21 100 

 
The bold results in Table 1 indicate that the ResGN 

optimized with the joint loss performs best for both attacks. 

In addition, the performance has achieved a significant 

improvement compared with their adversarial counterpart. 

Considering in real setting, most of the input are legitimate 

samples, we also test an amount of 2580 ‘cleaned’ images that 

are originally legitimate images. The results show that the 

joint loss still outperforms other six losses and only has a 

slight decline compared with the original legitimate samples. 

Thus, in following experiments, we use the ResGN optimized 

with the joint loss.  

Fig.2 demonstrates some instances that adversarial 

perturbations are successfully removed by ResGN. We can 

notice that not only a satisfied visual effect has been obtained 

for the cleaned image, but the distance between it and 

reference image has been reversed to obtain a correct 

verification result. 
 
4.3.2 Experiment on attacking intensity 

In this experiment, we produce multiple adversarial example 

sets using different attacking intensity in FGSM attack. And 

then, we learn each ResGN from each adversarial example set 

and use it to process all adversarial examples and legitimate 

examples. All processed examples are fed into the FaceNet to 

test the performance. We choose 0.02, 0.03 and 0.04 as 

attacking intensity and the results are listed in table 2.  

It is discovered that the ResGN learned from higher 

attacking intensity is capable of effectively cleaning the 

perturbations injected by lower attacking intensity, yet it is 

not vice versa. The results imply that the ResGN learned from 

higher attacking intensity adversarial examples is enough to 

clean the adversarial examples.  
 
Table 2: The face verification results for multiple attacking intensity 

adversarial examples. (%) 

Train        

Test 
0.02 0.03 0.04 

Dodging  

0.02 98.32 98.33 96.20 

0.03 5.12 99.45 98.69 

0.04 1.31 5.68 99.06 

Impersonation  

0.02 99.92 99.35 99.51 

0.03 42.48 99.92 99.76 

0.04 33.98 42.23 99.83 
 

5. CONCLUSION 
 
In this paper, we propose a novel deep residual generative 

network (ResGN) training framework and the optimized 

ResGN is used to clean adversarial example in face 

verification task. Given pairs of clean images and legitimate 

images, the joint loss comprised of a pixel loss, a texture loss 

provided by VGG-Face and a verification loss provided by 

FaceNet is minimized to learn ResGN. The empirical results 

validate the effectiveness of ResGN on cleaning adversarial 

perturbations for face verification on LFW benchmark 

dataset. Additionally, the proposed ResGN has a flexible 

adaptivity in that ResGN can incorporate with any pre-trained 

network applied to other face analysis task, such as face 

identification and facial attribute classification. In future, we 

will learn ResGN from more advanced adversarial examples 

and combine ResGN with other defensive technique to 

enhance security of image recognition system. 
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