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ABSTRACT

Nowadays, speech spoofing is so common that it presents a
great challenge to social security. Thus, it is of great sig-
nificance to recognize a spoofed speech from a genuine one.
Most of the current researches have focused on voice con-
version (VC), synthesis and recapture which mimic a target
speaker to break through ASV systems by increased false ac-
ceptance rates. However, there exists another type of spoofin-
g, voice transformation (VT), that transforms a speech sig-
nal without a target in order ‘not to be recognized’ by in-
creased false reject rates. VT has received much less atten-
tion. Thus, in this paper, we investigate the model of VT
and propose a method using a very deep dense convolution-
al network with 135 layers to detect VT spoofed speeches
from genuine speeches. The experimental results show that
the average accuracies over intra-database and cross-database
outperform the reported state-of-the-art methods.

Index Terms— spoofed speech, voice transformation,
Dense Convolutional Network.

1. INTRODUCTION

Speech spoofing can be classified into two categories: 1)
voice conversion (VC), synthesis and recapture that mimic
a target speaker; 2) voice transformation (VT) that changes
one’s speech signal without a target [1]. They present differ-
ent threats to security. The first ones are to change or capture
one’s speech, or to create an artificial speech, in order to be
recognized as target person, while the second one is to change
one’s speech in order not to be recognized.

In recent years, reported efforts mainly focus on the de-
tection of the first category. In [2] [3], long-term spectral s-
tatistics are used as the features and linear classfier is as the
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back-end classifier. In [4] [5] [6], mel-frequency cepstral co-
efficients (MFCC) are used as the features and GMM, SVM
are as the back-end classifiers. In [7] [8], modified group de-
lay is used as the features and HMM, GMM and SVM are
as the back-end classifiers. In [9] [10], spectrogram is used
as the input of the deep neural network (DNN) to recognize
spoofed speeches.

It should be noted that since abundant information of tar-
get person is generally needed for VC and synthesis, and
the situation for recapture is uncertain, there exist difficul-
ties and costs in implementing the first category of spoofing
to some extent. By contrast, no extra information is need-
ed for VT spoofing implementation, leading to the fact that it
has been integrated into many prevailing audio/speech editing
tools while the first category has not, and it has been conduct-
ed in many criminal cases. However, compared with the re-
searches on the first category detection, the researches on VT
spoofing detection are relatively fewer and insufficient. Wu
et al. and Wang et al. proposed algorithms of VT spoofing
detection that employs MFCC statistics as features and SVM
as classifier. Liang et al. proposed an approach based on con-
volutional neural network (CNN) for VT spoofing detection.
The accuracies of the above methods are all less than 95%,
indicating that an improvement is needed for practical appli-
cations.

Meanwhile, there has been a trend to use deep neural net-
work as back-end classifier in spoofing forensics in recen-
t year. The advantages of DNN framework over traditional
classifiers such SVM or GMM, is that DNN can automati-
cally extract deep features other than hand-designed features.
In DNN, degradation occurs with the increment of network
depth. In order to solve this problem, several solutions have
been proposed among which is the Dense Convolutional Net-
work (DenseNet). A DenseNet can significantly reduce the
number of parameters, eliminate the need to relearn redun-
dant feature-maps, strengthen the propagation feature, sup-
ports limited neuronal reuse and facilitates data training.

Therefore, in this paper, we examine the model of VT
spoofing and propose an effective method of VT spoofing
detection that employs spectrogram features and a very deep
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DenseNet with 135 layers. Experimental results show that it
achieves better performance than those of the state-of-the-art
efforts.

The remainder of this paper is organized as follows. The
feature and the dense CNN of our proposed algorithm are pre-
sented in Section 2 and Section 3, respectively. Experiments
are described in Section 4. The conclusions are given in Sec-
tion 5.

2. MODEL OF VT SPOOFING

VT spoofing in many audio/speech editors is based on phase-
vocoder methods [11] [12], in which a speech signal is repre-
sented by a quasi-stationary sinusoidal model computed from
short-time Fourier transform (STFT). However, due to the
resolution limitation, STFT bin frequencies generally do not
represent true or instantaneous frequencies. Thus, a phase-
vocoder is introduced which employs phase information that
STFT ignores to improve frequency estimation, and to break
the traditional tie between time and frequency characteristics
to keep the tempo unchanged. VT spoofing can be depicted
briefly as follows [11].

Suppose xt(n) is a frame of length N from the input
speech signal at time t. Firstly, the FFT coefficients of xt(n)
is obtained by Eq.1,

F (k) =

N−1∑
n=0

xt(n) · w(n)e−i
2πkn
N 0 6 k < N (1)

where w(n) denotes a Hamming or Hanning window and k
denotes frequency bin index.

Then, instantaneous magnitude |F (k)| and instantaneous
frequency ω(k) are computed in Eq.2 and Eq.3, respectively,

|F (k)| = |
N−1∑
n=0

xt(n) · w(n)e−i
2πkn
N | 0 6 k < N (2)

ω(k) = (k + ∆) · Fs/N 0 6 k < N (3)

where ∆ denotes the deviation of the kth bin frequency and
Fs denotes the sampling frequency. The computation of ∆
can be referred to in [12].

For VT spoofing, transient frequency ω(k) is modified by
Eq.4, where α denotes the scale factor, i.e. the spoofing factor.

ω′(bk · αc) = ω(k) · α 0 6 k, k · α < N/2 (4)

Linear interpolation is often used to modify the instanta-
neous magnitude, as seen in Eq.5 [12], where 0 6 k, k′< N /
2, k = [ k′ / α ], and µ = k′ / α − k.

|F ′(bk · αc)| = µ|F (k)|+ (1− µ)|F (k + 1)| (5)

Energy-preserving modification is another method to
change the instantaneous magnitude by Eq.6.

|F ′(bk · αc)| =
∑

bk·αc6k·α<bk·αc+1

|F (k)| (6)

For simplicity, we still use k as the index of the modified
instantaneous frequency ω′ and the instantaneous magnitude
F ′.

Then the instantaneous phase φ′(k) is calculated via the
instantaneous frequency ω′(k), and the transformed FFT co-
efficients are obtained by Eq.7.

F ′(k) = |F ′(k)|eiφ
′(k) (7)

Finally, the VT spoofed signal is obtained by inverse FFT
performed on F ′(k).

From Eq.4 and Eq.5, we can see that VT spoofing modi-
fies spectrum magnitude so that implicit features may be in-
troduced into the spoofed speech signal. Therefore in our pro-
posed method, we use the spectrogram of a speech as the input
of a deep neural network to extract deep features for classifi-
cation. We obtain the spectrogram of an input speech signal
by STFT, where the window size is 175, and the overlapping
is 50%. With respect to phonetics, VT spoofing is measured
by a 12-semitone division [13] leading the spoofing factor α
to the following form in Eq.8.

α(s) = 2s/12 (8)

s can take any integer value in the range of [-12, +12]. A
modification too weak or too strong will result in deception
failure or auditory unnaturalness. Therefore, in the experi-
ments, we consider the medium ranges between [-8, -4] and
between [+4, +8] that present the strongest deception ability.

3. DEEPLEARNING FRAMEWORK

3.1. The Dense Convolutional Network

In a conventional CNN, the output of the previous layer Xl−1
is transmitted to the next layer as input by a non-linear opera-
tion Hl to get the output Xl.

Xl = Hl(Xl−1) (9)

It is difficult to train a conventional CNN as degradation
occurs with the increment of layers. To have a good inhibitory
effect on the degradation, Residual Networks (ResNets) [14],
Highway Networks [15] and FractalNets [16] create short
paths Xl−n from early layers to later layers as shown in
Eq.10.

Xl = Hl(Xl−1) +Xl−n (10)

However, recent researches suggest that this type of con-
nection leads to the fact that many layers contribute very little
but occupy a large amount of computation [17]. Thus, an im-
proved structure of ResNet named Dense Convolutional Net-
work (DenseNet) was proposed to avoid this problem. In a
DenseNet, any layer has direct connections to all subsequent
layers, as shown in Eq.11,

Xl = Hl([X0, X1, ..., Xl−1]) (11)
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Fig. 1: The architecture of the proposed network

Fig. 2: The inner structures of each kind of the layers. Batch
Normalization [18], ReLU, Dropout [19] and Pooling are of
the operations before and after the convolution layer. k refers
to the number of convolution kernels.

where X0, X1, Xl−1 denote the output of the previous layer
of layer l and [...] denotes a the concatenation operation. Fur-
thermore, the output dimension of each layer has k feature
maps, where k is usually set to a small value.

This kind of dense connection mode have significant ad-
vantages over the aforementioned networks: 1) It ensures
maximum information flow between layers to strengthen fea-
ture propagation. 2) Dense connections have a regularizing
effect which reduces over-fitting on tasks with smaller train-
ing set sizes. 3) It allows DenseNet layers to be narrow, e.g.
k = 12, to significantly reduces the number of parameters, to
alleviates the problem of degradation, and to support the reuse
of limited neurons. 4) It does not need to relearn redundant
feature-maps and is convenient for training.

3.2. Structure of the Proposed DenseNet

The structure of the proposed DenseNet is shown in Fig.1.
The inputs are single channel spectrogram obtained by STFT,
and the sizes are all set to 90×88. The network consists of an
initial layer, three dense blocks, two transition layers, a glob-
al pooling layer and a linear layer. The three dense blocks
consist of 6, 12 and 48 bottleneck layers, respectively. The

Table 1: The number of 1s clips in each set
Dataset Clip number Dataset Clip number

TIMIT 1 7996 TIMIT 2 8967
NIST 1 18601 NIST 2 14589
UME 1 7482 UME 2 6952

linear layer is a full connection layer followed by a softmax
with two outputs which represent the probabilities of ’gen-
uine’ and ’spoofed’, respectively. The inner structures of each
kind of these layers are shown in Fig.2. Each bottleneck lay-
er contains 2 convolution layers, so that the entire DenseNet
contains 2×(6+12+48) + 1 + 1 + 1 = 135 convolution layers.

A bottleneck layer contains a 1×1 convolution layer fol-
lowed by a 3×3 convolution layer instead of two 3×3 convo-
lution layers to reduce computation, as shown in Fig.2. The
transition layer connects two adjacent denseblocks to further
reduce the size of the feature-maps.

4. EXPERIMENTAL RESULTS

4.1. Experimental Corpora and Setup

Three corpora are used in the experiments, namely, Tim-
it(6,300 clips, 630 speakers), NIST(3560 clips, 356 speakers)
and UME(4040 clips, 202 speakers). They are of WAV for-
mat, 8 kHz sampling rate, 16-bit quantization and mono.
Each corpus is divided into 2 sets as follows.

Training set: Timit-1 (3000 clips), NIST-1(2000 clips),
UME-1(2040 clips);

Testing set: Timit-2(3300 clips), NIST-2(1560 clips),
UME-2(2000 clips).

Each clip is further cut into several 1s clips. The number
of 1s clips in each set is shown in Table 1.

Four prevailing spoofing methods, i.e., Audacity [20],
Cool Edit [21], PRAAT [22] and RTISI [23], with spoofing
factors between [-8, -4] and between [+4, +8] are taken into
consideration. Thus, the number of the spoofed (negative)
clips is 40 times that of genuine (positive) clips. In order to
achieve data balance, we expand the positive clips by shifting
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Table 2: The detection accuracy of intra-database evaluation

Training
dataset

Testing
dataset

The proposed
method

Liang’s
method

[25]

Wu’s
method

[26]
TIMIT 1 TIMIT 2 99.45% 96.52% 95.87%
NIST 1 NIST 2 98.04% 95.93% 94.56%
UME 1 UME 2 97.56% 94.85% 93.63%
Average Average 98.35% 95.77% 94.69%

every other 200 samples to have the same number of positive
clips as negative clips.

We use an ADAM optimizer [24] to train the proposed
DenseNet with L2 loss function, β1 and β2, namely, the expo-
nential decay rates for the 1st and the 2nd moment estimates,
are set to be 0.9 and 0.999, respectively. The epsilon hat ε
is set to be 10−8. The learning rate and the dropout rate are
set to be 10−4 and 0.3, respectively. The training batches are
100,000 and the batch size is 64.

Detection accuracy in Eq.12 is used to measure the per-
formance,

d = (Gd + Sd)/(G+ S) (12)

where G and S are the numbers of genuine and spoofed clips
in the testing sets, respectively, and Gd and Sd are the num-
bers of the genuine clips correctly detected from G and of the
spoofed clips correctly detected from S.

4.2. Intra-database evaluation

In the case of intra-database, the testing set and training set are
from the same corpus. The detection results of our proposed
method and the other reported efforts are shown in Table.2,
from which we can be seen that the average detection accu-
racy of ours is 2.58% higher than that of [25] which adopts
conventional CNN model, and 3.66% higher than that of [26]
which employs SVM.

Our proposed method outperforms the other two, because
a DenseNet model has much more layers than a conventional
CNN so that it can extract more and deeper features to facil-
itate classification. Besides, in a conventional CNN, decision
is made with deep features solely. But in a DenseNet, due to
the dense connection mode, the decision is made with deep
features as well as early edge features so that accuracy can be
further improved.

4.3. Cross-database evaluation

In reality scenarios, testing speech and training speech may
come from different sources, and thus they may have differ-
ent intrinsical features. Therefore, cross-database evaluation
is conducted to test the diversity of the proposed method. One
of the 3 corpora is selected as the testing data set and the oth-
er two are as the training sets. The experimental results are
shown in Table 3. We can see that the results of the first two

Table 3: The detection accuracy of cross-database evaluation

Case
Training
dataset

Testing
dataset

The proposed
method

Case 1 TIMIT 1/NIST 1 UME 2 96.45%
Case 2 NIST 1/UME 1 TIMIT 2 95.26%
Case 3 TIMIT 1/UME 1 NIST 2 80.20%

Average Average 90.63%

cases are quite good, but case 3 is not ideal. One possible
reason is that the data volume of NIST is larger than the other
two sets as shown in Table 1, and the model trained by NIST
has better generalization ability. In [25], the accuracy of case
1 is given as 94.37%, while ours is 96.45% indicating that our
proposed method outperforms the one in [25]. The results of
the other two cases are not presented in [25].

5. CONCLUSION

In this paper, a method based on dense convolutional network
for detecting spoofed speech from genuine speech is present-
ed. Deep features can be automatically extracted by the 135-
layer DenseNet. The experimental results indicates that it is
superior to the state-of-the-art methods, and it achieves com-
puting efficiency by careful optimization of kernel reduction
and by the employment of bottleneck layers. The future work
will focus on the application of deeper network structure to
extract deeper features and further improve the accuracy.
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