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ABSTRACT

Automatic speech generation algorithms, enhanced by deep learn-
ing techniques, enable an increasingly seamless and immediate
machine-to-human interaction. As a result, the latest generation of
phone-calling bots sounds more convincingly human than previous
generations. The application of this technology has a strong social
impact in terms of privacy issues (e.g., in customer-care services),
fraudulent actions (e.g., social hacking) and erosion of trust (e.g.,
generation of fake conversation). For these reasons, it is crucial to
identify the nature of a speaker, as either a human or a bot. In this
paper, we propose a speech classification algorithm based on Con-
volutional Neural Networks (CNNs), which enables the automatic
classification of human vs non-human speakers from the analysis of
short audio excerpts. We evaluate the effectiveness of the proposed
solution by exploiting a real human speech database populated with
audio recordings from various sources, and automatically generated
speeches using state-of-the-art text-to-speech generators based on
deep learning (e.g., Google WaveNet).

Index Terms— Audio forensics, convolutional neural network,
speaker detection

1. INTRODUCTION

The recent Google and Microsoft keynote events had a wide appeal
with the Artificial Intelligence (AI) community. The two presented
projects, Google Duplex [1] and Microsoft Xiaoice [2] respectively,
unveiled the giant step of the two tech companies in reproducing
human-to-bot conversations, making incredibly challenging for hu-
man ears to distinguish between artificial and natural speeches. In
particular, Google Duplex uses WaveNet as a core technology [3],
which is a Deep Neural Network (DNN) model to generate raw au-
dio waveforms introduced by the Google AI working group, Deep-
Mind. This Text-To-Speech (TTS) service achieves state-of-the-art
performance in terms of speech conversion, and provides great im-
provements in reproducing natural speech.

On one hand, the advance in human-like generated speech opens
new business opportunities for diverse markets [4] (e.g., audiobooks,
voice-to-voice translation, etc.). On the other hand, it paves the way
for new privacy and security issues to rise. As a matter of fact, the
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availability of speech generation tools that can be used by any per-
son increases concerns about the authenticity of a speaker. Intruders
could pretend to speak on behalf of other people, perfectly repro-
ducing their voices. That would be a danger for social hacking and
fake-news generation, especially when paired with realistic video
generation tools [5]. Authorities have already sensed that risk and
first regulations on bot speech generation have been proposed. For
example, in California the so called “Bot bill”, SB-1001 [6], would
make it unlawful for any person to use a social bot to communicate
or interact with people on-line without disclosing that the bot is not
a natural person. However, the legislation cannot prevent fraudulent
actions. Therefore trusted procedures need to be enforced.

With the deployment of Voice over IP (VoIP) services, telecom-
munication operators have already faced a similar problem caused
by the so called robocalls, which initiate unsolicited and unde-
sired communications. Previously, Spam over Telephony Internet
(SPIT) detection techniques [7, 8, 9] were used to tackle this prob-
lem. Nowadays, these algorithms are not as effective as they used
to be, since AI-based services are able to generate conversational
speech almost identical to human speech. Therefore, it becomes ur-
gent to develop new solutions to distinguish human from bot audio
speeches.

In this paper, we propose a method to identify whether the
source of an audio frame from a conversational speech is either a
human or a bot, considering the challenging scenario of state-of-the-
art Google, Amazon, Microsoft and IBM Text-To-Speech services.
Specifically, we leverage a Convolutional Neural Network (CNN)
applied to the audio spectrogram (i.e., a 2D representation of the
audio signal) computed on short chunks of a recorded audio signal.
This approach shows promising results in classifying human and
bot speeches. It is also proven to achieve comparable performance
when the algorithm is tested on different speech corpora from the
ones used for training.

The rest of the paper is structured as follows. In Section 2, we
introduce the state-of-the-art on bot recognition. In Section 3, we
provide all the details about the proposed detection technique, from
audio pre-processing to network definition. In Section 4, we describe
all the performed experiments and comment the results achieved.
Finally, Section 5 concludes the paper providing some final remarks.

2. RELATED WORK

The classification problem tackled in this paper is a well-known
problem of spam detection in telephone communications. The au-
thors in [8] provide a comprehensive survey of the techniques ap-
plied by telecommunication providers to block spam communica-
tions. In this survey, the Audio-CAPTCHA based techniques are
the ones which are more related to our problem. For instance, the
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Fig. 1. Pipeline for audio tracks classification. The first four blocks represent the audio pre-processing steps, whereas the last block performs
classification by means of a CNN.

works in [7, 9] propose tools based on audio CAPTCHA, where a
user starting a SIP session is required to solve an audio test, report-
ing the sequence of characters that are generated by the authentica-
tion server. In particular, the authors in [7] analyze the Short-Term
Fourier transform (STFT) of the generated audio and analyze quan-
titative indicators of the spectrum, such as average amplitude or en-
ergy. By tuning properly the contribution of those indicators, they
were able to recognize with an accuracy of 97% whether the incom-
ing call was generated by a human or a bot. Another approach was
proposed in [10], where a Turing Test is conducted in order to rec-
ognize the caller in a telephone conversation. Their study focused
on the recognition of specific patterns in human communications,
which are not replicated by machine generators. However, the afore-
mentioned approaches account for an excessive delay in the com-
munications and, furthermore, are not tailored to be robust against
the novel speech generation services. As a matter of fact, consider-
ing that TTS services providing human-like performances in terms
of speech fidelity have been only recently proposed [1, 2, 3], to the
best of our knowledge no specific techniques targeting their detec-
tion have been proposed so far. Nevertheless, given that this new
generation of bots can fool human ears, the problem of bot detection
can be cast as a speaker recognition problem. A very wide literature
focuses on automatic speaker recognition [11]. Most of the classi-
cal systems use Hidden Markov Model (HMM) and Gaussian Mix-
ture Model (GMM), which exploit the statistical features of time and
frequency components of the audio input, and model the probability
distribution over the vector of input features. In the last years, thanks
to deep neural networks, the field of speaker recognition has taken a
step forward. Some works, like the ones in [12, 13], define CNN ar-
chitectures in order to identify speaker change detection. The work
in [14] applies CNN concepts adapted for an hybrid HMM model.

However, speaker recognition systems are typically tailored
to detect biometric properties of specific speakers to be recog-
nized [15]. Conversely, in bot detection problems, we are more
interested in recognizing a whole class of speakers (i.e., all bots).
Moreover, if changing voice biometric traces is challenging for a hu-
man speaker, fine-tuning a TTS algorithm to fool a biometric-based
detector is a far less challenging task [16]. For these reasons, in
the next section we propose a methodology designed to distinguish
humans from bots, assuming that not all bots speeches are available
at training time.

3. PROPOSED APPROACH

Given a speech audio track x(t), our goal is to detect whether it
has been recorded from a human speaker or a bot. The solution we
propose follows the pipeline depicted in Fig. 1. The audio track
under analysis is normalized in terms of amplitude, and a standard
windowing technique is used to extract equal length audio frames.
Each frame is turned into a 2D spectrogram that is fed to a CNN
used for classification purpose. In the following, we detail each step

by treating separately signal pre-processing procedures and the pro-
posed CNN.

Signal pre-processing. The audio signal x(t) is normalized us-
ing peak normalization in order to obtain x̄(t) = x(t)/max(|x(t)|).
A series of W frames x̄w(t), w ∈ [1,W ] is obtained by windowing
x̄(t) with a 50% overlap Hann window of 1 second length (i.e.,
16 000 samples in our experiments). Frames with energy below
a pre-defined threshold are discarded as simple silence detection
technique.

The spectrogram magnitude is computed for each frame x̄w(t)
in order to obtain a 2D image-like representation. The rationale be-
hind this approach is that 2D CNNs can be powerful instruments to
tackle classification problems also in the audio field [17]. In this
way the problem of identifying whether a speech is human or bot
can be treated as an image classification task, for which many CNN
architectures already proved to be promising [18].

Two types of spectrograms are analyzed: the classical spec-
trogram X̄w(t, f), and the mel-frequency spectrogram X̄w(t,m).
The former provides a time-frequency representation of the signal
through Short-Time Fourier Transform (STFT). In this representa-
tion, samples are uniformly spaced in the frequency domain. How-
ever, it has been observed that the human perception of audio signals
is not uniform along the spectrum. Human ear acts as a bank of filters
logarithmically distributed in the frequency domain. For this reason,
we compute also the mel-frequency spectrogram, that accounts for
this behavior. Differently from the classical spectrogram, the mel
spectrogram does not provide a uniform frequency representation of
the audio signal, but concentrates the components at lower frequen-
cies. The frequency axis is converted in a mel axis, where the mel is
defined as [19]

m =

{
f, f ≤ 1 kHz
2595 · log

(
1 + f

700

)
, f > 1 kHz.

(1)

For a better understanding of the difference between the two kinds
of spectrograms, Fig. 2 shows both time-frequency representations
of a portion of human speech.

Z-score normalization is then applied to spectrogram magni-
tudes on the frequency/mel axis. The final result is a 2D image of
size 256×32 samples as shall be explained in the experimental setup.

CNN architecture. The proposed shallow CNN architecture
takes as input the 2D representation of the audio signal X̄w (where
we drop the time and frequency indexes to denote either normal or
mel spectrogram), and outputs a two-element vector indicating the
likelihood of the analyzed audio window to belong to each class (i.e.,
human and bot).

A graphical representation of the used architecture is shown in
Fig. 3. The architecture is composed by four 2D convolutional lay-
ers, each one followed by a max-pooling layer (2 × 2 pool size and
2 × 2 stride). The first and third convolutional layers are composed
by 32 and 64 filters with size 4 × 4, respectively. The second layer
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(a) Spectrogram (b) Mel-frequency spectrogram

Fig. 2. Frequency and mel-frequency spectrogram of 1 second of
human speech
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Fig. 3. Shallow convolutional neural network architecture

consists in 48 filters with size 5 × 5. The last convolutional layer is
composed by 128 filters with size 4 × 2. All the four convolutional
layers have stride equal to 1× 1. The last convolutional layer is then
followed by a fully connected layer with ReLU activation function
outputting a 128-element vector. A last fully connected layer with
soft-max activation outputs a 2-element vector used to get the final
classification result, i.e., human or bot.

The architecture has been designed following the common ap-
proach of extracting high-level features from the image (i.e., the
spectrogram in our case) through a series of convolutional layers
and then classifying the result using fully connected layers [20].
Notice that, due to the different spectrogram resolution in time and
frequency domain, the last convolutional layer has been adapted to
work on rectangularly shaped inputs. Moreover, the shallow design
of the used CNN accommodates for training on smaller datasets.

4. EXPERIMENTS

In this section, we report details regarding the performed experimen-
tal campaign tailored at validating the proposed approach.

Dataset. The used dataset is composed by a series of human and
bot-generated speech recordings. Lots of human speech datasets are
available online. Usually, these datasets are used to perform auto-
matic speech recognition and to train text-to-speech systems. We
decide to select at least 2 of them to avoid overfitting on noise or
intrinsic characteristics of a single dataset. Specifically we use the
“LibriSpeech ASR corpus” (LIBRI) [21] and the “CMU ARCTIC
databases” (ARTIC) [22]. The former is a large-scale corpus of read
English speech generated from audiobooks taken from the LibriVox
project. The latter is a dataset built at the Language Technologies In-
stitute at Carnegie Mellon University as phonetically balanced with
a single US English female and a single US English male speaker.
In the following, the union of the 2 datasets will be referred to as

Table 1. Test accuracy using HUMAN+3 BOTS for training
Test Bot Spectrogram Type Classification accuracy

POLLY Classic 98.12%
Mel 95.80%

AZURE Classic 48.15%
Mel 74.29%

WATSON Classic 56.32%
Mel 77.56%

HUMAN dataset. The LIBRI dataset consists of 2 700 tracks, and
the ARTIC consists of 2 260 tracks.

No standard datasets are currently available online for the bot-
generated speech, to the best of our knowledge. Therefore we au-
tomate the dataset generation process exploiting cloud TTS services
APIs that can be exploited to generate speech starting from simple
text. Starting from the transcript of the “LibriSpeech ASR corpus”
dataset, we consider 4 different cloud services with different bots
configuration. Namely, we use Google Cloud TTS service with both
Standard (G STD) and WaveNet (G WAVE) bots1, Amazon AWS
Polly (POLLY)2, Microsoft Azure TTS (AZURE)3 and IBM Watson
TTS (WATSON)4. All selected TTS services allow to specify differ-
ent types of voice. We exploit this possibility to generate the wildest
bot speech dataset as possible. In the following the union of G STD,
G WAVE and POLLY datasets will be referred as 3 BOTS dataset.
Each bot dataset consists of 2 700 audio tracks, except for the WAT-
SON dataset, which is limited to 1 075 (due to service limitations at
dataset creation time). Notice that bots read the same sentences used
in the human dataset.

All audio files are WAV PCM files, sampled at 16KHz with 16bit
per sample and 1 channel (i.e., mono), of average length of 10 sec-
onds. This configuration is shared between all TTS services and the
human speech. No conversion, sub-sampling, or channel mixing is
performed in order to avoid introducing any further trace that could
bias the achieved results.

Experimental setup. The CNN is built using Keras [23] run-
ning on top of TensorFlow [24]. To calculate spectrograms we use
the Kapre library [25] that allows (mel)spectrogram calculation on-
the-fly on-GPU without the need to store them into disks. Kapre
allows to integrate the audio signal processing pipeline with Keras.

As loss function we select binary cross-entropy as typically done
in classification problems. We use Adam optimization algorithm
[26] on batches of 50 audio files split in 1 second frames. We set
the number of mels for spectrogram computation to 256, and we use
512 samples per STFT time window. Thus, the input size of the CNN
is 256× 325. We train the model for up to 100 epochs. Specifically,
we start with a learning rate of 0.001, and we decimate it if valida-
tion loss does not decreases over 5 epochs. If validation loss does
not decrease for more than 10 epochs, training stops. On average,
the network reaches convergence after 25 epochs.

In the experiments we are considering different datasets com-
bination. For each combination of dataset, we split it in training,
validation and testing set. We keep 30% of each dataset for testing,

1https://cloud.google.com/text-to-speech/
2https://aws.amazon.com/polly/
3https://azure.microsoft.com/en-us/services/

cognitive-services/text-to-speech/
4https://www.ibm.com/watson/services/

text-to-speech/
5Each second is composed by 16 000 samples, with 512 samples per

STFT window, it means 32 sample in the time domain of the spectrogram
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Table 2. TPR values with different training and testing sets. LIBRI and ARTIC (and their union HUMAN) are the human datasets. Test sets
containing bots and humans used also for training are marked in bold.

Train
Test LIBRI ARTIC POLLY G STD G WAVE AZURE WATSON

LIBRI+POLLY 92.47% 81.83% 95.77% 26.94% 38.65% 24.10% 34.91%
LIBRI+G STD 90.97% 74.58% 35.78% 97.23% 81.90% 57.17% 46.45%

LIBRI+G WAVE 90.16% 77.18% 42.95% 78.71% 90.16% 63.69% 66.75%
LIBRI+3 BOTS 84.82% 57.21% 93.67% 73.56% 70.61%

HUMAN+3 BOTS 85.21% 96.66% 74.29% 77.56%

whereas the remaining part is further split in 75% for training and
25% for validation. Then, we also test our trained models with hu-
man and bot datasets not used for training. This approach allows us
to evaluate how the models are able to recognize general features to
identify the two classes (human or bot), and not overfitting on the
specific human or bot. To avoid asymmetric datasets, we always
balanced the number of human and bot samples.

As a final note, results are reported in terms of True Positive Rate
(TPR) and accuracy in distinguishing bots from humans considering
a single 1 second audio excerpt (i.e., one spectrogram).

Spectrogram choice. Our first experiment aims at evaluating
which kind of spectrogram better fits our needs. We therefore train
and test both methods using different combination of sources (e.g.,
training on LIBRI and POLLY and testing on G WAVE datasets). By
using classical spectrogram, we reach high accuracy in the validation
phase (greater than 98%) but very poor accuracy when testing on a
different bot dataset (around 50%). This implies that with classical
spectrogram it is not possible to obtain a general model for our clas-
sification problem. On the contrary, when we feed the CNN with the
mel spectrogram, the testing accuracy reaches good levels (greater
than 70%) even on different bots.

Table 1 reports an example of the aforementioned results when
the training set is composed by HUMAN and 3 BOTS, and test is
performed on individual bot datasets. When test is evaluated on
POLLY, we get comparable accuracy values with classical or mel
spectrogram, being POLLY one of the bots using also for training.
On the contrary, tests on AZURE and WATSON datasets (not used
during training) show different performances, and the mel spectro-
gram outperforms the classical one. For this reason in the following,
only mel spectrogram is used.

Robustness and generalization. To further evaluate the gener-
alization capability of our method, we analyze its performance by
training on different combinations of bots and humans datasets.

Fig. 4 shows the confusion matrices obtained using single bots
vs. single humans (i.e., Figs. 4a, 4b and 4c) as well as using all
bots together (Fig. 4d). In this scenario, bots and humans used for
training are also those used for testing. In all these configurations,
the proposed solution achieves an accuracy always greater than 89%.

In Table 2 we report numerical results obtained by training and
testing on different dataset combinations. In this scenario, we con-
sider for test also bots and humans not used for training. Each row
reports the accuracy obtained for a given training set, testing the
model with both the corresponding test set (highlighted in bold) and
the other datasets of bots and humans not belonging to the initial set.

It is possible to notice that, when the algorithm is trained using
a single bot (i.e., the first three rows of Table 2), only the bot used
for training is actually correctly recognized as such. The only excep-
tion is obtained using LIBRI+G STD and LIBRI+G WAVE, which
enables recognizing one another. However, since both datasets come
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Fig. 4. Confusion matrices on test sets with different datasets

from Google Cloud, they might share some characteristics.
However, if the method is trained on more bots (i.e., the last

two rows of Table 2), other bots not belonging to the training set
(i.e., AZURE and WATSON) start being correctly recognized with
accuracy ranging from 70% to 78%. Even if a small number of bots
are used, the proposed CNN architecture is able to generalize and
an increasing trend in TPR is shown. As a matter of fact, this is an
expected behavior given that the proposed solution is strongly data-
driven. The more representative and diversified the training data, the
better the results.

5. CONCLUSIONS

In this paper, we proposed a CNN architecture fed by 2D represen-
tations of audio signals to classify human and bot speech, in order
to deal with the new privacy and security issues due to automatic
speech generation tools. Our approach showed promising results
(i.e., accuracy greater than 90%) when training and testing sets are
matched in terms of used bots. Additionally, if many bots were used
for training, the network started generalizing also on bots never seen
before (i.e., accuracy greater than 70%).

We hope the achieved results will raise research community
awareness about bot detection problem, and motivates it to further
investigate this issue in the near future.
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