PHYLOGENETIC ANALYSIS OF SOFTWARE USING CACHE MISS STATISTICS

Sebastiano Verde, Simone Milani, Giancarlo Calvagno

University of Padova, Department of Information Engineering

ABSTRACT

While the phylogenetic analysis of multimedia documents
keeps being investigated, some recent studies have shown the
possibility of re-using the same strategies to analyze the evo-
lution of computer programs (Software Phylogeny), consid-
ering its many applications spanning from copyright enforce-
ment to malware detection.

This paper presents a solution for reconstructing the phy-
logenetic dependencies of different releases of a given pro-
gram. The proposed method collects cache miss statistics
during the program execution, builds a dissimilarity matrix
from the results, and then estimates the corresponding Soft-
ware Phylogenetic Tree (SPT) using a minimum spanning tree
algorithm.

Index Terms— phylogeny, cache management, software
forensics, software identification, multimedia forensics

1. INTRODUCTION

The online diffusion of documents and multimedia contents
reveals several analogies with the genetic evolution of living
organisms. As an example, a posted image can be down-
loaded, modified and re-posted online several times. In these
operations, users may process either the original picture
or one of its other versions. This generates a set of near-
duplicate copies that can be well represented by the nodes
of a tree (called Phylogenetic Tree or PT), where edges are
associated to transformations. Since this tree structure could
not be completely recovered from the metadata available on
the network, recent studies in the information forensics lit-
erature have tried to reconstruct these chains of processing
steps using phylogenetic analysis strategies. Given a set of
near-duplicate multimedia contents (like images [1], videos
[2] and audio files [3]), it is possible to compute a set of
similarity/dissimilarity values on each couple of similar con-
tents and recover the original PT structure by means of a
maximum/minimum spanning tree algorithm.

More recently, some preliminary results have shown that
these methodologies can be applied to software as well [4].
In fact, computer programs usually evolves progressively, in-
cluding additional functionalities or reducing the computa-

This work has been partially supported by the University of Padova
project Phylo4n6 prot. BIRD165882/16.

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

2552

tional load thanks to a rewriting of the most frequently-used
pieces of code. This can be easily verified on programs and
libraries developed using web-based project hosting services
[5]; several programmers collaborate on the final code by
means of small incremental changes. Moreover, several par-
allel versions are sometimes developed carrying on differ-
ent branches together with the main implementation. A phy-
logenetic structure can also be verified in the evolution of
malwares [6, 7], which usually change operation orders and
function calls with the purpose of mismatching the signatures
stored in the scanning programs. Reconstructing the software
phylogenetic tree (SPT) allows verifying their origins, and
therefore identifying the most appropriate measures to make
them harmless. In the end, localizing a piece of software
within its phylogenetic tree contributes to the parametrization
of its originality and to evaluate possible patent violations.

This paper presents a system for the reconstruction of the
SPT relative to different types of programs. The similarity
between different versions are measured with respect to the
statistics of cache misses measured in different working con-
ditions. This allows to extend such analysis to heterogeneous
software, differently from the preliminary phylogenetic ap-
proach in [4] that only considered multimedia codecs, through
an analysis of the processed signals. Moreover, the recon-
struction accuracy was improved by fusing multiple phyloge-
netic trees originated from different inputs.

In the following, Section 2 overviews some related works,
while Section 3 described the adopted algorithm. Experimen-
tal results are reported in Section 4, and final conclusions are
drawn in Section 5.

2. RELATED WORKS

The phylogenetic analysis of online contents was initially fo-
cused on the investigation of near-duplicate documents [8],
and later extended to images [1], videos [9, 10, 2] and audio
files [3, 11]. In these analysis, the definition of a reliable met-
ric to parameterize the similarity/dissimilarity between cou-
ples of contents is crucial. As for images, near-duplicate
contents usually differ by means of an affine transformation
[12], which allows modelling the dissimilarity with a distance
function after image registration. Since these measures re-
sult quite noisy, additional processing is required in order to
make the estimation more robust [13, 14]. When dealing with

ICASSP 2019

Input data

I
«lch

(si,5)) =
Dissimilarif

. —_—> o
(SFroing e

L & s s

— NS —_— = . —_—> axS —
o, G —

Lj

Software set

2-step Kruskal

Fig. 1. Proposed software phylogeny pipeline.

video contents, alignment and dissimilarity computation are
performed by means of local descriptors [15], while the work
in [16] employs a set of transform based features that targets
compressed audio files.

Some recent works focus on the problem of reconstruct-
ing the phylogenetic tree for multimedia codecs [4]; dissimi-
larity measurements were computed on the outcomes of cod-
ing operations. Although effective, such strategy could not be
extended to other kind of software solutions. As a matter of
fact, we had to focus on other types of distinctive features to
measure software similarities.

Some previous works on malicious software detection and
identification computed a set of characterizing features from
the sequence of coded instructions [17]. In order to overcome
the problem of obfuscation (which is largely employed for
malware and viruses), it is possible to adopt a dynamic feature
synthesis [18], while others process software outcomes like
register errors [19].

These solutions proved to be extremely robust to obfus-
cation, re-engineering and partial alterations, which make the
authentication and plagiarism detection extremely difficult as
the complexity of the software increases.

3. PHYLOGENETIC ANALYSIS

Given a set S = {s1,...,sny} of N different pieces of soft-
ware, the phylogenetic analysis of S is usually divided in two
main steps.

First, we need to define a suitable dissimilarity metric
to measure the amount of differences between a pair of pro-
grams. By computing the dissimilarity d;; for each pair
(si,85), Vi # j, it is possible to arrange the resulting values
ina N x N dissimilarity matrix D = [d; ;]. Secondly, the
obtained dissimilarity matrix D is processed by a minimum
spanning tree (MST) algorithm, which returns the most likely
phylogenetic graph for the given software set S.

Typical MST algorithms for weighted undirected graphs
are Kruskal’s [20] and Prim’s [21]. In this work, we pro-
pose an original solution based on a twofold application of
Kruskal’s algorithm, as described in 3.2.

3.1. Dissimilarity metric

The first stage of a phylogenetic analysis consists in measur-
ing the dissimilarity between pairs of objects by means of a
properly defined metric. For analyzing software, we propose
a dissimilarity metric that leverages cache miss statistics col-
lected during the execution of the program.

A cache miss is a failed attempt to read or write data in
the CPU cache memory, which results in a main memory ac-
cess and a longer latency. Cache miss statistics provide useful
information to perform memory debugging and software pro-
filing, and can be collected through the use of specific tools
during the execution of a piece of software. For this work we
employed Cachegrind, one of the tools available in the frame-
work Valgrind [22].

Cachegrind analyzes how the program interacts with a
cache memory by simulating a machine with independent
first-level instruction and data caches (I1 and D1), backed by
a unified second-level cache (L2), which matches the configu-
ration of many modern machines. For machines having more
than two levels of cache, Cachegrind simulates the first-level
(L1) and last-level (LL) caches only, since the LL cache has
the most influence on runtime, as it masks accesses to main
memory, and the L1 caches often have low associativity, so
simulating them can detect bad code interactions.

Statistics collected by Cachegrind are reported in Table 1.

I, Number of instructions executed
11,,, I1 cache read misses

IL,,, LL cache instructions read misses
D, Number of memory reads

D1,,,. | DI cache read misses

DL,,,. | LL cache data read misses

D, Number of memory writes

D1,,. | DI cache write misses

DL,,, | LL cache data write misses

Table 1. Cachegrind statistics.

These statistics are presented for each function in the pro-
gram and therefore it is possible to arrange the output of the
simulation in a M X 9 cache statistics matrix C', where M
equals the number of functions in the program.

Operationally, our system takes a program s; € S and an
input file f from a certain set F (for programs that requires
some input) and runs the Cachegrind simulation, providing a
cache statistics matrix C’if . This is repeated for each program
inS.

Given a pair of cache statistics matrices (C’zf , C’]f), we de-
fine the dissimilarity between them as

dl ;=] = ., (1)

where ||-||2 denotes the matrix 2-norm. Note that different
programs (and even different releases of the same software)

2553

use different functions, in general, which means that cache
statistics matrices may have incompatible dimensions. To
overcome this problem, we tested two approaches: 1) taking
the intersection of the two function sets; ii) taking the union
of the two function sets. In the latter case, functions miss-
ing in one program are filled with a zero-vector in the cache
statistics matrix.

Since a program may behave differently in response to the
specific input, we collect a set of dissimilarity matrices,

D! = [dzf,j} J

for multiple input files f € F in order to achieve a higher
accuracy. These matrices are then processed by the phyloge-
netic tree reconstruction algorithm, described in the following
paragraph.

3.2. Phylogenetic tree estimation

In the second stage of a phylogenetic analysis, the dissimilar-
ity metrics computed in the previous block are usually pro-
cessed by a MST algorithm that returns an estimated phylo-
genetic tree. However, our system produces multiple dissimi-
larity matrices, one for each input file, and therefore a proper
fusion technique has to be designed.

We propose a procedure called 2-step Kruskal (2K), built
on the classic Kruskal’s algorithm, which takes in input a
set of weighted adjacency matrices an outputs a single MST.
The Kruskal’s algorithm is widely adopted in phylogenetic
reconstruction, although other solutions can be employed and
adapted to our double MST approach.

The 2K algorithm consists of three stages:

1. Vf € F, run Kruskal’s algorithm on D, obtaining the
minimum spanning tree G ;

2. ¥(i,4), count how many times the edge 4, j is chosen
among all the estimated trees G/ and store the results
in a matrix E = [e; j];

3. run Kruskal’s algorithm on —F, obtaining the maxi-
mum spanning tree of £, corresponding to the final
phylogenetic tree, G.

This procedure practically consists in a majority voting of
the most frequently reconstructed tree. Instead of simply av-
eraging the matrices D/ and computing a single MST, this
method proved to offer better stability against the presence
of a few noisy matrices, as shown in Section 4. Further-
more, matrix averaging presents non-trivial normalization is-
sues since different dissimilarities have different magnitudes.
Thanks to the designed fusion strategy, the 2K approach over-
comes this problem.

Thor com. || OpenJPEG rel. | RNNoise com.
2015/11/17 2.0 2017/08/20
2016/01/18 2.1 2017/09/08
2016/03/11 2.1.1 2017/09/15
2016/03/21 2.1.2 2017/09/20
2016/05/28 2.2.0 2017/10/18
2016/11/09 23.0
2017/01/20
2017/03/22
2017/10/21
2018/01/17
LZ4 rel. LIBSVM rel.

1.7.3 v270 v310
1.7.4.2 v287 v311
1.7.5 v300
1.8.1 v311
1.8.1.2 v316
1.8.2 v317
1.8.3 v323 v323

Table 2. Releases and commits of analyzed software.

4. EXPERIMENTAL RESULTS

The validation of the proposed SPT estimation strategy was
carried out by analyzing the releases and commits of a set of
open source programs.

We considered two multimedia codecs already studied in
[4], namely Thor [23] and OpenJPEG [24], as well as other
kinds of programs: LZ4 [25], a lossless data compressor;
RNNoise [26], a recurrent neural network for audio noise re-
duction; and LIBSVM [27], a library for support vector ma-
chines. The complete list of commits and releases is reported
in Table 2. Note that for LIBSVM we considered two sets of
releases, one with major releases only, and one with all the
minor releases from v310 to v323.

Furthermore, we built different sets of input files to meet
the requirements of each program. For Thor, we used 7
raw video sequences at 4CIF resolution (crew, crowdrun,
duckstakeoff, harbour, ice, parkjoy, soccer).
For OpenJPEG and LZ4, 30 images from the Kodak dataset
[28] were employed. LIBSVM was tested with 5 datasets for
binary classification.

The evaluation of the estimated SPTs was performed by
means of the percentage of correctly reconstructed edges.
Each program was tested with four different strategy config-
urations: union or intersection of function sets, for dissimi-
larity computation; 2-step Kruskal algorithm or dissimilarity
averaging, for tree estimation.

The results for every program and strategy configuration
are reported in Table 3, where 2K denotes the proposed 2-
step Kruskal strategy and D denotes dissimilarity averaging.
Moreover, the comparison with the pixel-based strategy pro-
posed in [4] is reported for Thor and OpenJPEG. Note how

2554

Analyzed software

Percentage of correct edges

Name Type No. releases No. inputs 2K union Dunion 2Kinters Dinters [4]
Thor Video coding 10 7 0.89 0.89 0.67 0.78 0.56
OpenJPEG Image coding 6 30 0.60 0.60 0.60 0.60 0.20
RNNoise Audio denoising 5 40 0.50 0.25 0.50 0.25 -
LZ4 Data compression 7 30 0.67 0.67 0.67 0.67 -

. . 7 5 0.83 0.83 0.50 0.50 -
LIBSVM Machine learning 14 11 023 015 023 015 -

Table 3. Experimental results for analyzed software.

—e— Cache union + 2-step Kruskal
—3— Cache union + average dissim.
Cache inters. + 2-step Kruskal | 4
—A— Cache inters. + average dissim.
—>¢— Pixel-based + 2-step Kruskal 4
Pixel-based + average dissim.

0 L L L L L L L
0 1 2 3 4 5 6 7 8

Number of input videos

Edges reconstruction accuracy

Fig. 2. Accuracy comparison of different dissimilarity met-
rics and tree reconstruction strategies for Thor software (10
releases) with increasing number of inputs.

2K algorithm combined with the union of cache statistics ma-
trices performs best (or on par) for all the analyzed programs.

Figure 2 reports the accuracy for the analysis of Thor
video codec releases as we increase the number of input files.
It is possible to see how the cache union with the 2K solu-
tion not only outperforms (almost) any other configuration,
but also provides the most stable reconstruction, yielding a
constant accuracy for each number of input videos greater
than 2.

Finally, Figure 3 shows a heatmap representation of the
average dissimilarity matrix obtained for the second set of
LIBSVM releases (containing all minor releases), from which
we can observe an additional property of the proposed system.
This set is particularly tricky for phylogeny since the releases
are extremely similar to one another. However, two major re-
leases, v316 and v317, are contained in the set, and the clus-
terization between pre-v316 and post-v317 releases is clearly
visible from the dissimilarity matrix. In other words, the sys-
tem is able to distinguish whether a significant implementa-
tion change happened or a minor commit or bug fix since the
dissimilarity metric scales in accordance with the amount of
change existing between two pieces of software.

v310
V311
v312
v313
v314

<
W
7

<
PR
o

v317

LIBSVM release

< <
D W
© o

v320
v321
v322
v323

LIBSVM release

Fig. 3. Heatmap visualization of the average dissimilarity
matrix for LIBSVM software (releases from v310 to v323),
showing an evident clustering into two subsets of similar re-
leases.

5. CONCLUSIONS

In this work we presented a solution to the software phy-
logeny problem, which employs cache miss statistics to
measure the dissimilarity between pairs of programs, and
estimates the phylogenetic structure by means of a minimum
spanning tree algorithm. This method improves the state
of the art, as it allows to deal with generic pieces of soft-
ware, other than multimedia codecs. The proposed system
was validated with releases and commits of various open
source programs available online. Experimental results show
a promising accuracy in the phylogenetic reconstruction, as
well as in distinguishing major releases from minor commits
and bug fixes. Future work will be devoted to evaluating
how the reconstruction accuracy varies for different operat-
ing systems and compilers and to parameterizing software
dissimilarity metric including register values and errors to
enhance the reconstruction accuracy.

6. REFERENCES

[1] Z. Dias, A. Rocha, and S. Goldenstein, “First steps to-
ward image phylogeny,” in Proc. of 2010 IEEE WIFS,
Dec. 2010, pp. 1 6.

2555

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

[13]

(14]

S. Milani, P. Bestagini, and S. Tubaro, ‘“Video phy-
logeny tree reconstruction using aging measures,” in
Proc. of EUSIPCO 2017, 2017, pp. 2181-2185.

S. Verde, S. Milani, P. Bestagini, and S. Tubaro, “Audio
phylogenetic analysis using geometric transforms,” in
Proc. of IEEE WIFS 2017, Dec 2017, pp. 1-6.

Sebastiano Verde, Simone Milani, and Giancarlo Cal-
vagno, ‘“Phylogenetic analysis of multimedia codec soft-
ware,” in Proc. of EUSIPCO 2018, Sept. 2018.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social
coding in github: Transparency and collaboration in an
open software repository,” in Proc. of 2012 ACM CSCW,
2012, pp. 1277-1286.

Md. Enamul Karim, Andrew Walenstein, and Arun
Lakhotiaand Laxmi Parida, “Malware phylogeny gen-
eration using permutations of code,” J. Comput. Virol.,
vol. 1, no. 1-2, pp. 13-23, Nov. 2005.

D. lliopoulos, C. Adami, and P. Szor, “Darwin inside the
machines: Malware evolution and the consequences for
computer security,” CoRR, vol. arXiv 1111.2503, 2011.

L. Kennedy and S.-F. Chang, “Internet image archeol-
ogy,” in Proc. of ACMMM, 2008.

John R. Kender, Matthew L. Hill, Apostol Natsev,
John R. Smith, and Lexing Xie, “Video genetics,” in
Proc. of ACMMM, 2010.

F. Costa, S. Lameri, P. Bestagini, Z. Dias, S. Tubaro,
and A. Rocha, “Hash-based frame selection for video
phylogeny,” in Proc. of 2016 IEEE WIFS, Dec. 2016,

pp. 1-6.

S. Verde, N. Pretto, S. Milani, and S. Canazza, ‘“Stay
true to the sound of history: Philology, phylogenetics
and information engineering in musicology,” Applied
Sciences, vol. 8, no. 2, 2018.

A. De Rosa, F. Uccheddu, A. Costanzo, A. Piva, and
M. Barni, “Exploring image dependencies: A new chal-
lenge in image forensics,” in Proc. of SPIE, 2010.

A. Melloni, P. Bestagini, S. Milani, M. Tagliasacchi,
A. Rocha, and S. Tubaro, “Image phylogeny through
dissimilarity metrics fusion,” in Proc. of EUVIP 2014,
2014, pp. 1-6.

S. Milani, M. Fontana, P. Bestagini, and S. Tubaro,
“Phylogenetic analysis of near-duplicate images using
processing age metrics,” in Proc. of 2016 IEEE ICASSP,
2016, pp. 2054-2058.

2556

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

S. Lameri, P. Bestagini, A. Mellon, S. Milani, A. Rocha,
M. Tagliasacchi, and S. Tubaro, “Who is my parent?
reconstructing video sequences from partially matching
shots,” in Proc. of 2014 IEEE ICIP, 2014, pp. 5342—
5346.

M. Maksimovic, L. Cuccovillo, and P. Aichroth, ‘“Phy-
logeny analysis for mp3 and aac coding transforma-
tions,” in Proc. of 2017 IEEE ICME, 2017, pp. 1165-
1170.

A. Palisse, A. Durand, and J.-L. Lanet, “Mal-
ware’O’Matic a platform to analyze Malware,” in
French Japanese workshop on CyberSecurity, Rennes,
France, Sept. 2016, Inria.

F. Biondi, S. Josse, and A. Legay, “Bypassing malware
obfuscation with dynamic synthesis,” ERCIM News, ,
no. 106, Sept. 2016.

G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-
scale malware classification using random projections
and neural networks,” in Proc. of 2013 IEEE ICASSP,
May 2013, pp. 3422-3426.

Joseph B. Kruskal, “On the shortest spanning subtree of
a graph and the traveling salesman problem,” Proceed-
ings of the American Mathematical Society, vol. 7, no.
1, pp. 48-50, 1956.

Robert C. Prim, “Shortest connection networks and
some generalizations,” The Bell System Technical Jour-
nal, vol. 36, no. 6, pp. 1389-1401, Nov. 1957.

N. Nethercote and J. Seward, “Valgrind: A framework
for heavyweight dynamic binary instrumentation,” SIG-
PLAN Not., vol. 42, no. 6, pp. 89-100, June 2007.

Cisco System, “Thor Video Codec Git Hub Repository,”
https://github.com/cisco/thor, Dec. 2017.

ISPGroup (UCL), “Open JPEG:
An open-source JPEG 2000 codec,”
https://github.com/uclouvain/openjpeg/,
2017.

LZ74, “Extremely Fast Compression Algorithm,”
https://github.com/cisco/1z4/1z4,2018.

Xiph.org Foundation, “RNNoise,”
https://github.com/xiph/rnnoise, 2018.

Cisco System, “Thor Video Codec Git Hub Repository,”
https://github.com/cisco/thor, 2017.

Kodak, “Kodak Lossless True Color Image Suite,”
http://r0k.us/graphics/kodak, 2017.

		2019-03-18T11:17:06-0500
	Preflight Ticket Signature

