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ABSTRACT

A novel predicting system is proposed to find out the security
weaknesses of a chaotic random number generator (RNG).
Convergence of the predicting system is proved using auto-
synchronization. Secret parameter of the target chaotic RNG
is revealed where the public information are the design of the
chaotic RNG and a scalar time series observed from the target
chaotic system. Simulation and numerical results verifying
the feasibility of the predicting system are given such that,
next bit can be predicted while the same output bit sequence
of the chaotic RNG can be regenerated.

Index Terms— Chaotic system, chaos, random number
generator, time series, predicting, security weaknesses, secret
parameters

1. INTRODUCTION

Today’s technological developments emphasize the necessi-
ties in the following field of circuits and systems: Small area
occupation, secure architecture design, low power consump-
tion and high speed operation. In connection to this, high
speed and more secure random number generators (RNG) [1]
are positioned more clearly in the heart of the research as the
main components of the security systems [2].

Having any knowledge about the structure of the RNG
must not provide a useful prediction of the output bit sequence
of the RNG. Even so, fulfilling the requirements for the con-
fidentiality of security systems using RNG requires three pri-
vacy criteria as a must: 1. The RNG must fulfill all statistical
randomness tests; 2. The preceding and following random bits
can not be predicted [3] and; 3. Anyone should not generate
the same output bit sequence of the RNG [4].

One of the basic principle of the cryptography is that ac-
cording to Kerckhoff’s hypothesis [2], it is assumed that the
overall security of any crypto system is completely dependent
on the security of the key, and that all other parameters of the
crypto system are publicly observable. Vulnerability analysis
is complementary to cryptography. The interaction between
these two cryptology branches creates a contemporary cryp-

tography that becomes stronger due to the vulnerability analy-
sis that reveals the weaknesses of the existing crypto systems.

It has been acknowledged nowadays that, continuous-time
chaotic oscillators can also be used to implement RNGs [8,
10, 11, 12], such as discrete-time chaotic maps [5, 6, 7]. In
particular, a hybrid RNG sourced from a chaotic “true” RNG
has been proposed in [8]. In this article, we target the chaotic
RNG reported in [8], and propose a predicting system to ana-
lyze security vulnerabilities of the targeted RNG.

The robustness of a crypto system depends on the key
used, or in other words, the attacker’s ability to predict the
key. The target RNG [8] defines the deterministic chaos as
the true source of randomness, contrary to the latest RNG
designs [11, 12] in which the equivalent noise generated by
circuit components is analyzed.

The organization of the article is as follows. In Section 2
the chaotic RNG is explained in detail; In the next Section 3
a predicting system is proposed for vulnerability analysis of
the targeted chaotic RNG and its feasibility is verified; Sec-
tion 4 describes the numerical and simulation results that are
followed by the conclusion section.

2. TARGET SYSTEM

Chaotic systems can be categorized into two groups: In rela-
tion to the evolution of underlying dynamical system, one is
discrete time and the other is continuous time.

The target paper [8] proposed a hybrid RNG sourced from
a chaotic “true” RNG. The chaotic “true” RNG was developed
by using a simple continuous-time chaotic system [9] and im-
plemented in FPGA. The analysis of the chaotic system [9]
proposed by J. C. Sprott yields the state equations given in
[8] which transforms into the following equation:

ẋ1 = a1x1 + z1
ẏ1 = z1x1 − y1
ż1 = −x1 + y1
ȧ1 = 0

(1)

The equations in 1 generate chaos for the single-parameter
a1 in a large region. The chaotic attractor used for numerical
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analysis is shown in Fig. 1 for a1 = 0.40 using the 5th-order
Runge-Kutta Butcher algorithm with fixed step size. Note
that, the last term in the given equation was added for the
ease of mathematical operations.

Fig. 1. The chaotic attractor used for numerical analysis of
the chaotic system for a1 = 0.40.

Random number generation method was explained in [8]
where the mechanism is fundamentally based on analysis of
the chaotic system by using a numerical method. Initially
given chaotic system is implemented in Virtex-6 evaluation
platform by Xilinx ISE design suite using 5th-order Runge-
Kutta Butcher algorithm with fixed step size τ .

By this way time series data are obtained for x1, y1 and z1
chaotic state variables in τ steps. Then, the threshold values
denoted by σ are adaptively calculated for x1, y1 and z1 and
used in the following equation to convert time series data into
random bits RS where RS(x1, y1, z1) = 0 for x1, y1, z1 < σ
and RS(x1, y1, z1) = 1 for x1, y1, z1 ≥ σ.

Finally, bitwise XOR operation is applied to the random
bits and the state matrix given in [8] in order to generate the
chaotic RNG output binary sequence Sbit. The authors of [8]
have preferred to use NIST 800-22 [13] statistical test suite
in order to analyze output randomness of their chaotic RNG
design.

However, Big Crush [14] and Diehard [15] statistical test
suites weren’t applied to output bit stream of the RNG. Note
that, the target RNG [8] do not fulfill the first secrecy criteria,
which states that “TRNG must pass all the statistical tests of
randomness.”

3. PREDICTING SYSTEM

Since the ground-breaking paper of Pecora and Carroll, the
synchronization of chaotic systems has become an increas-
ingly sought-after field of research [16]. In this article, the
convergence of the predicting and target systems is proven us-
ing the auto-synchronization, (synchronization of chaotic sys-
tems with secret parameters) [17]. In order to analyze vulner-
ability of the target chaotic RNG, a predicting system given
by the following equation 2 is proposed:

Fig. 2. Largest Conditional Lyapunov Exponents as a func-
tion of coupling strength e.

ẋ2 = a2x2 + z2 + e(x1 − x2)
ẏ2 = z2x2 − y2
ż2 = −x2 + y2
ȧ2 = y2(x1 − x2)

(2)

where e is the coupling strength between the target and
predicting systems and a2 is the secret control parameter of
the target system to be revealed. The information available are
the structure of the target RNG system and a scalar time se-
ries given by a observable where x1 is the observable chaotic
signal given in 2.

For analyzing the stability of auto-synchronization, we
numerically calculate the Conditional Lyapunov Exponents
(CLE) using standard 4th-order Runge-Kutta algorithm with
fixed step size. CLEs for the predicting system are calculated
from the set of ordinary differential equations given in Eqn. 2
where QR decomposition method [18] is used. Numerical Ja-
cobian is exploited which is calculated numerically by using
finite differences. Offset for numerical Jacobian = 10−0.008

and integration time step is 0.004 while integration steps per
Jacobian map is 50.

In Fig.2, we plot largest CLEs as a function of coupling
strength e. As shown in this figure, when e is greater than 1.22
then the largest CLE is negative and hence auto- synchroniza-
tion of target and predicting systems is achieved and stable.
For any e less than or equal to 1.22, largest CLE is positive
and auto-synchronization is unstable.

4. NUMERICAL RESULTS

In this article, we numerically demonstrate the proposed pre-
dicting system using standard 5th-order Runge-Kutta Butcher
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Fig. 3. Synchronization error Log |ex(t)| (red line).

algorithm with fixed step size. The predicting system ex-
pressed by the Eqn. 2 is designed that converges to target
system as x2 → x1, y2 → y1, z2 → z1 where t → ∞ and t
is the normalized time. Error signal a, x, y, and z of the auto-
synchronization are defined as ea = a1 − a2, ex = x1 − x2,
ey = y1 − y2 and ez = z1 − z2 respectively. Here pro-
posed predicting system aims to find out appropriate coupling
strengths such that |e(t)| → 0 when t → ∞.

Fig. 4. Synchronization error Log |ey(t)| (blue line).

Log |ex(t)|, Log |ey(t)|, Log |ez(t)| and Log |ea(t)| are
given as a function of normalized time t in Fig.3, Fig.4, Fig.5,
and Fig.6, respectively, for e = 3. It is observed from the
given figure that the auto-synchronization is achieved in less
than 170t, where the synchronization effect is better than that
of e = 1.23.

Fig. 5. Synchronization error Log |ez(t)| (green line).

Auto-synchronization of the predicting system is shown
in Fig.7 where the convergence of the recovered parameter
values a2 of the predicting systems to the known values a1

of the target system is illustrated. As shown from the given
figure that, the proposed predicting system converges to the
parameter a1 of the target system (for a1 = 0.35, a1 = 0.40,
and a1 = 0.45) and auto-synchronization is achieved in less
than 170t.

Fig. 6. Synchronization error Log |ea(t)| (orange line).

Simulation results of x1 − x2, y1 − y2 and z1 − z2, are
depicted in Fig. 8, Fig. 9 and Fig. 10, which show non-
synchronized behavior and synchronization of target and pre-
dicting systems.

From the figures it is observed that stable identical syn-
chronization can be achieved. A synchronized phenomenon
has not been observed initially but the proposed predicting
system approaches the target system in less than 170t and the
stable identical synchronization is obtained. These synchro-
nized phenomenon are shown by colored lines in Fig. 8, 9 and
Fig. 10, respectively.

Since the identical synchronization of predicting and tar-
get systems is achieved in less than 170t (x2 → x1, y2 →
y1, z2 → z1), the secret parameters of the target random
number generation system are accurately revealed and the re-
covered values of x1, y1, z1, and Sbit converge to their corre-
sponding fixed values. As a result, it is clear that chaotic sys-
tems have achieved the identical synchronization and there-
fore the output bitstreams of the target and predicting systems
are completely synchronized.

Fig. 7. Convergence of the parameter value a2 of the pre-
dicting system to the fixed value a1 of the target system for
a1 = 0.35, a1 = 0.40, and a1 = 0.45.

As a result, the proposed predicting system has not only
reached the identical synchronization at the level of the

2549



Fig. 8. Numerical results of x1−x2 showing the synchronized
and unsynchronized behaviors of target and estimate systems.

chaotic state variables but also synchronized at the level
of the generated bit sequence. Proposed system not only
reveals the preceding and following bits of the target RNG
but also shows that the predicting system can generate the
same output bit sequence of the target RNG. The target RNG
[8] satisfies neither the second nor third secrecy criteria that
an RNG must fulfill. In conclusion, it has been verified that
deterministic chaos can not be the true source of randomness.

5. CONCLUSIONS

In this paper, a predicting system is proposed to discover the
security weaknesses of a chaotic random number generator
(RNG). It is shown that secret parameters of the chaotic RNG
can be recovered by the proposed predicting system using
auto-synchronization scheme. Although the only informa-
tion available is the structure of the chaotic RNG and a scalar
time series, auto-synchronization of the predicting system is
achieved and hence not only next bit but also whole output bit
sequences are synchronized. The predicting system, makes
the output bit sequences predictable and thus makes the tar-
geted chaotic RNG indeed unusable for cryptographic appli-
cations.

6. REFERENCES

[1] Ferguson, N., Schneier, B., Kohno, T.: Cryptography
engineering: design principles and practical applica-
tions, Wiley Publishing, Inc. (2011)

Fig. 9. Numerical results of y1−y2 showing the synchronized
and unsynchronized behaviors of target and estimate systems.

Fig. 10. Numerical results of z1 − z2 showing the synchro-
nized and unsynchronized behaviors of target and estimate
systems.

[2] Martin., K.: Everyday Cryptography: Fundamental
Principles and Applications, 2nd Edition, Oxford Uni-
versity Press (2017)
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