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ABSTRACT

In this paper, we propose a novel view-invariant action recog-
nition method using a single monocular RGB camera. View-
invariance remains a very challenging topic in 2D action
recognition due to the lack of 3D information in RGB im-
ages. Most successful approaches make use of the concept of
knowledge transfer by projecting 3D synthetic data to mul-
tiple viewpoints. Instead of relying on knowledge transfer,
we propose to augment the RGB data by a third dimen-
sion by means of 3D skeleton estimation from 2D images
using a CNN-based pose estimator. In order to ensure view-
invariance, a pre-processing for alignment is applied followed
by data expansion as a way for denoising. Finally, a Long-
Short Term Memory (LSTM) architecture is used to model
the temporal dependency between skeletons. The proposed
network is trained to directly recognize actions from aligned
3D skeletons. The experiments performed on the challeng-
ing Northwestern-UCLA dataset show the superiority of our
approach as compared to state-of-the-art ones.

Index Terms— Pose Estimation, Skeleton, View- Invari-
ance, LSTM

1. INTRODUCTION

Data acquisition with a particular camera setup depends not
only on the observed scene but on the camera configuration
as well. The setup leads to pixel-level data variations that are
unrelated to the observed scene and subsequently poses a sig-
nificant challenge in pattern recognition [1]. Particularly, in
action recognition systems, tolerance to data variation result-
ing from differing camera positions (viewpoints) has emerged
as one of the main challenges in the field.

The introduction of RGB-D cameras played an impor-
tant role in enhancing view-invariant action recognition. In
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Fig. 1. Overview of the proposed approach.

fact, these low-cost sensors provide in real-time relatively ac-
curate 3D skeletons that have boosted the design of view-
invariant approaches [2, 3, 4, 5, 6, 7]. We distinguish two
different ways of addressing the issue of viewpoint variability
using skeletons provided by RGB-D sensors. The first class of
methods carries out a pre-processing of alignment by estimat-
ing a transformation matrix between the skeleton and a canon-
ical coordinate system as in [4, 5, 7]. On the other hand, the
second class of approaches aims to design motion descriptors
which are not affected by viewpoint variability such as: eigen
joints [2] based on the pairwise distance between joints, Lie
Algebra Representation of body-Parts (LARP) [6] based on
transformation matrices estimated between body-part pairs,
etc. These approaches have shown great potential [8].

Unfortunately, they remain hardly applicable to various
real-world scenarios due to the two main limitations of RGB-
D sensors: (1) skeletons are correctly estimated only within
a specific range; and (2) RGB-D cameras are highly affected
by lightning changes.

As an alternative, the topic of view-invariant action recog-
nition using 2D image sequences, i.e., RGB data without the
depth modality, has been explored by researchers. Among the
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Fig. 2. Proposed network for view-invariant action recognition. FC refers to the fully connected layer at the end of the main
LSTM block.

most successful RGB-based approaches, one can mention the
methods based on the concept of knowledge transfer [9, 10].
The latter aim to estimate a view-independent latent space
where the features are mapped and compared. This is done
by generating 3D synthetic data using a Motion Capture (Mo-
Cap) system. The acquired 3D data are then projected in var-
ious viewpoints. These approaches usually use 2D features
which are by definition not view-invariant such as Trajectory
Shape Descriptor (TSD) [9, 10, 11, 12]. As a result, these de-
scriptors do not include radial motion information and do not
take into account the human body structure.

In this paper, we propose a skeleton-based approach for
view-invariant action recognition using a monocular camera.
Our work builds on the recent effective Convolutional Neu-
ral Network (CNN) based methods for the estimation of 3D
skeletons from a single RGB image [13, 14, 15]. We propose
a full system, as illustrated in Fig. 1, where 3D skeletons are
firstly extracted from RGB images using a CNN-based esti-
mator. To achieve view-invariance, an effective pose-based
data alignment is carried out. Then, the temporal dependency
of the estimated pose sequences is modelled using a Long
Short-Term Memory (LSTM) network. To address potentially
noisy pose estimates, we train a feed-forward network to-
gether with the LSTM in an end-to-end training scheme. The
feed-forward network is designed to expand the pose esti-
mates to a higher dimensional space and potentially decouple
several explanatory factors before modelling the temporal-
dependency. In summary, the contributions of this paper are:

1. A novel approach for view-invariant action recognition
using only RGB data.

2. An LSTM–based temporal model that is effective for
estimating the temporal dependency between noisy
skeletal pose estimates.

To evaluate and validate the proposed system, experiments on
the Northwestern-UCLA dataset are realized. The obtained
results show that our method outperforms RGB-based state-
of-the art approaches on the same dataset.

This paper is structured as follows: Section 2 describes

the proposed approach. Then, Section 3 depicts the conducted
experiments. Finally, Section 4 concludes this work.

2. PROPOSED APPROACH

In this section, we describe the two main components of the
proposed approach; 3D pose estimation from RGB and data
alignment which is described in Section 2.1, and pose se-
quence modelling described in Section 2.2.

2.1. 3D pose estimation and data alignment

Recent development in deep learning has enabled hierarchical
systems to learn powerful filters from data [16]. Furthermore,
filters that are learned from large datasets can effectively be
used for problems with insufficient data, using what is called
transfer learning. The VNect approach proposed in [15] is one
of the systems that use transfer learning for effective 3D pose
estimation directly from RGB images. VNect is based on a
CNN pose regression that allows the real-time estimation of
2D and 3D skeletons using a single RGB image. For each
estimated human joint, the network is trained to estimate a
2D confidence heatmap along with locations maps (for each
of the three dimensions).

One of the main advantages of estimating a 3D pose is the
ability to estimate the positions of corresponding 3D points
in different viewpoints. In which case, 3D pose alignment
can be estimated with a closed-form solution. To further ex-
plain, let x1 and x2 be the estimates of the same subject’s 3D
pose from two different viewpoints. Assuming the mean of
the estimated pose is centered, the alignment of the estimated
pose is performed by estimating the rotation R through the
following optimization:

arg min
R

||x1 −Rx2||22. (1)

The formulation (1) has a closed-form solution given as

R̃ = VUT , (2)
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where UΣVT = x1x
T
2 , with U and V being unitary matrices

and Σ a diagonal matrix corresponding to the singular value
decomposition (SVD) of x1x

T
2 . The matrix R̃ denotes the

estimated rotation matrix. Given two sequences of n poses
estimated from two different viewpoints X1 = {x1

1, · · · ,xn1}
and X2 = {x1

2, · · · ,xn2}, we estimate the alignment between
the first corresponding poses x1

1 and x1
2 using (2). Afterwards,

the estimated rotation matrix R̃ is used to align the rest of the
subsequent poses of the sequence.

2.2. Pose sequence modelling

In general, 3D pose estimation from RGB data can be noisy
depending on the estimation model and the available train-
ing dataset. In this subsection, we propose an LSTM–based
temporal model that is suitable for estimating the temporal
dependency between noisy skeletal pose estimates. Our ap-
proach has two main components: (1) a feed-forward network
for expanding the data to a high-dimensional space, and (2)
multi-layer LSTM units for modelling the temporal depen-
dency, see Fig. 2.
Data expansion: An estimated 3D skeleton with J number
of joints is a vector in R3J . Hence, a noisy joint estimate
is directly reflected on some of the dimensions of the ob-
served vector. One typical solution for removing noise and
redundancy is to contract the data to a lower dimensional
space [17]. On the contrary, in this paper, we expand the data
to a higher dimensional space. The main motivation for ex-
panding the data is to disentangle explanatory factors that are
obscured by noisy joint estimates. Consequently, the param-
eters of the expansion function are learned directly from the
training dataset. Expansion of an observed skeleton is defined
as follows

x̃ = tanh(Wx + b), (3)

where W is a k×3J matrix with k � 3J , b is a bias vector in
a k-dimensional space, and the x̃ denotes the expanded pose
estimate.
Temporal model and action labeling: The temporal depen-
dency between the sequential data points is modelled using
layers of LSTM units [18]. An LSTM is a gated recurrent
neural network that models temporal dependency as a station-
ary process. Although it has several components, we herein
will refer to the integrated computational unit as LSTM. Sub-
sequently, given an expanded input data x̃, we estimate hier-
archical latent variables by layering LSTM units one on top
of another, see Fig. 2. Consequently, the inferred latent space
from the ith pose estimate is given as

hLi = LSTM(x̃i), (4)

where L denotes the index of the last LSTM layer. Finally, an
action label from a set Ψ, is assigned to a sequence as

ψ̃ = arg max
ψ∈Ψ

(tanh(WhLn + b)), (5)

where n is the index of the last pose estimate. The connection
weights and biases of the overall network (temporal model
and data expansion) are trained together by minimizing the
cross-entropy between the predicted and the given probability
of an action label via back-propagation and back-propagation
through time [16].

3. EXPERIMENTS

In this section, the experimental setup is presented along with
the obtained results. For the evaluation of the proposed ap-
proach, our experiments are conducted on the Northwestern-
UCLA Multiview Action3D dataset [19] denoted as NW-
UCLA.

3.1. NW-UCLA dataset

NW-UCLA dataset is one of the most challenging RGB-D
based datasets in multi-view action recognition. It consists
of 1494 videos of 10 action classes (pick up with one hand,
pick up with two hands, drop trash, walk around, sit down,
stand up, donning, doffing, throw, carry) performed by 10
subjects. Each action can be repeated from 1 to 6 times per
subject. These actions are captured simultaneously from 3
different viewpoints and both RGB and depth modalities are
provided along with the corresponding estimated 3D skeleton
sequences. For our experiments, we follow the splitting pro-
tocol suggested in [19], where two viewpoints are used for
training and the third one for testing.

3.2. Experimental setup and implementation details

For the estimation of 3D skeleton sequences from RGB
videos, we used the pre-trained VNect model1, which pro-
vides a 3D skeleton estimate with 20 joints per frame. In
addition, the skeleton sequences were temporally aligned
using zero padding in an automated way.

In our experiments, we set the batch size to 2 considering
the small size of NW-UCLA dataset. Moreover, using cross-
validation, the optimal learning rate is set to 0.0002 and the
number of epochs is chosen to be 300. The implementation of
our architecture is based on PyTorch2 using 128 hidden units
per layer.

3.3. Experimental Results

To validate the effectiveness of the proposed RGB-based
view-invariant model, we consider three scenarios: (1) Eval-
uation with and without expansion unit; (2) Comparison of
VNect poses against RGB-D provided skeletons; and (3)
Comparison against state-of-the-art.

1http://gvv.mpi-inf.mpg.de/projects/VNect/
2https://pytorch.org/
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3.3.1. Evaluation with and without expansion unit

The expansion unit is the first layer of our proposed network,
as shown in Fig. 1 and Fig. 2. This unit is mostly responsible
for removing noise and redundancy from the input skeleton
sequences. We run the experiments using both cases and the
results are presented in Table 1. In this case, we used the
provided RGB-D skeleton data and the viewpoints 1 and 2
for training and the viewpoint 3 for testing. Our proposed
approach with the incorporation of the expansion module
achieves 83.4% accuracy. The latter is 3.5% higher than the
one reported without the utilization of this specific module
mostly because of the dimensionality expansion. In this case,
the abstraction of the data description increases. Thus, noisy
joint estimates have lower contribution to the representation.

Method Accuracy
No expansion + LSTM 79.9
Expansion + LSTM 83.4

Table 1. Accuracy of recognition (%) on the NW-UCLA
dataset considering the cases where the expansion module is
present and not present. The results are obtained using view-
points 1 and 2 for training and viewpoint 3 for testing.

3.3.2. Comparison of VNect poses against RGB-D estimated
skeletons

To evaluate the reliability of VNECT poses, we conduct ex-
periments using the provided RGB-D skeleton sequences as
input to the proposed network. In this scenario, we also use
the viewpoints 1 and 2 for training and viewpoint 3 for testing.
The reported accuracy in Table 2 using the provided RGB-
D skeletons is 83.4% which is 3.8% lower than the accu-
racy achieved with the use VNect-provided poses. Although
VNect generates 3D skeleton data from RGB data, it shows
robustness to partial self-occlusions compared to RGB-D sen-
sors.

Method Accuracy
Expansion + LSTM 83.4
VNect + Expansion + LSTM (VE-LSTM) 87.2

Table 2. Accuracy of recognition (%) on the NW-UCLA
dataset using the provided RGB-D skeletons and the esti-
mated skeletons from VNect. The results are obtained using
viewpoints 1 and 2 for training and viewpoint 3 for testing.

3.3.3. Comparison against state-of-the-art approaches

In Table 3, the obtained results of our approach are presented
and compared against some state-of-the-art approaches. Our
network performance outperforms RGB-based approaches by

more than 10%. Indeed, our approach reaches 79.9% of accu-
racy on NW-UCLA dataset against 69.4% using NKTM [20].

{Source} | {Target} {1,2}| 3 {1,3}| 2 {2,3}| 1 Mean
Hankelets [21] 45.2 - - -
DVV [22] 58.5 55.2 39.3 51.0
CVP [23] 60.6 55.8 39.5 52.0
AOG [24] 73.3 - - -
nCTE [25] 68.8 68.3 52.1 63.0
NKTM [20] 75.8 73.3 59.1 69.4
R-NKTM [26] 78.1 - - -
VE-LSTM (ours) 87.2 82.1 70.4 79.9

Table 3. Accuracy of recognition (%) on the NW-UCLA
dataset. The reported results are obtained using two view-
points for training and the remaining one for testing. Source
indicates the viewpoints used for the training step, while Tar-
get specifies the testing viewpoint.

4. CONCLUSION

In this paper, we proposed a novel view-invariant action
recognition approach using a single RGB camera. This is
achieved by using a 3D human pose estimator from RGB
images. The estimated 3D poses are used for computing a
view-alignment rotation between observations. Subsequently,
an LSTM based network is proposed in order to estimate the
temporal dependency between noisy skeleton pose estimates.
To that end, we proposed two main components: (1) a feed-
forward network for expanding the data to a high-dimensional
space; and (2) a multi-layer LSTM for modelling the tempo-
ral dependency. Experimental results show the superiority
of our approach when compared to existing methods. Also,
the 3D skeleton estimates using VNect show higher accuracy
compared to the ones provided by Kinect, showing robustness
to possible occlusions that may appear on the RGB images.
As future work, we intend to investigate in more detail the
noise introduced by the estimated skeletons over time, as well
as the impact of adding challenging viewpoints.
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