
IMPROVING OBJECT DETECTION WITH RELATION GRAPH INFERENCE

Chen-Hang He, Shun-Cheung Lai and Kin-Man Lam

Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hong Kong

ABSTRACT

Many classic object detection approaches have proven that
detection performance can be improved by adding the ob-
ject’s context information. However, only a few methods have
attempted to exploit the object-to-object relationship during
learning. The reason for this is that objects may appear at
different locations in an image, with an arbitrary size and
scale. This makes it difficult to model the objects in a unified
way within a network. Inspired by Graph Convolutional Net-
work (GCN), we propose a detection algorithm that can infer
the relationship among multiple objects during the inference,
achieved by constructing a relation graph dynamically with a
self-adopted attention mechanism. The relation graph encodes
both the geometric and visual relationship between objects.
This can enrich the object feature by aggregating the informa-
tion from the object and its relevant neighbors. Experiments
show that our proposed module can efficiently improve the
detection performance of existing object detectors.

Index Terms— Object detection, Graph convolutional
neural network

1. INTRODUCTION

In many computer vision tasks, feature fusion is often ap-
plied to improve the efficiency of an algorithm. An example
is the layer-level fusion, such as in the feature pyramid net-
work [1] and the lateral network [2], which incorporates the
bottom layer with fine-grained details and the top layer with
strong semantics into a single layer. Another example is the
spatial-level fusion, such as in [3], which uses the nonlocal
mean for image denoising, and in [4], which introduces back-
ground information to enhance local features. In addition,
Convolutional Neural Networks (CNNs) also fuse the features
from earlier layers by a sequence of convolution and pooling
operations, with the size of the receptive field increased for
feature extraction. These fusion methods are usually implicit
and low-level, and cannot be generalized to different tasks.
Many empirical studies [5, 6, 7] have shown that, by incor-
porating object-to-object relationships, the performance of

Acknowledgements: The work described in this paper was supported by
a project from CNERC of the Hong Kong Polytechnic University, Hong Kong
(Project No. 1-BBYT).

recognition algorithms can be easily improved. This motivated
us to explore an explicit, high-level feature fusion technique
for object-detection tasks, in which object-to-object relations
are used to achieve feature fusion at the instance level. Inspired
by the graph convolutional network (GCN) [8], we propose
to enhance the local feature representations, by constructing
an object relation graph on top of the proposal-based object
detectors, e.g. [9] and [10]. Each graph node represents the
feature of a region proposal, while the edges represent the
object relations between each pair of proposals. Thus, we
can enrich the features of each proposal by aggregating the
features from all other related proposals through the graph
convolution. The edge weight is a measure of the relevance of
the current proposal and other proposals, and can be learned in
an adaptive self-attention manner. Our proposed method can
be considered as a variant of Faster RCNN [10]. In the first
stage, we use the region proposal network (RPN) to generate
redundant object proposals, which serve as the graph nodes.
Then, we apply two different modules to learn the object rela-
tions between these proposals. In the second stage, we adopt
two graph convolutional layers, which take the relation matrix
and the Region-of-Interest (RoI) features as input and produce
the bounding box offsets and classes. In the following sec-
tions, we will briefly review Faster RCNN and GCN, and also
describe our proposed detector in detail.

2. RELATED WORK

2.1. Faster RCNN

Faster RCNN is a two-stage detector. It integrates feature
extraction, proposal extraction, bounding-box regression, and
classification into a unified network, which greatly improves
the overall performance, especially in terms of detection
speed. Faster RCNN consists of four basic modules. The
feature-extraction layer uses a set of basic operations: Con-
volution+ReLU+pooling layers, to extract high-resolution
feature maps from an input image. The feature maps are
shared by the subsequent Region Proposal Network (RPN)
layers and RoI pooling layer. RPN uses softmax to generate
class-agnostic region proposals by correcting the anchors from
the predicted offsets. The RoI pooling layer, which collects
the high-resolution feature maps and proposals, produces RoI

2537978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

features, which are then fed to the subsequent classification
and regression layers. The classification layer uses the RoI
features to determine the category of the proposals, and the
regression layer generates the refined position of the object
bounding boxes.

2.2. Spectral Graph Convolutions

In this section, we firstly define the notions used for the graph
convolutions. Given a graph signal x ∈ RN , the normalized
graph Laplacian is denoted as L = IN − D−1/2AD−1/2,
where A is the symmetric adjacency matrix and D is the diag-
onal degree matrix. The graph convolution is equivalent to the
multiplication of the graph signal and the filtering kernel gθ
parameterized by θ ∈ RN in the spectrum domain, and taking
the inverse Fourier transform afterwards. In the matrix-vector
form, this can be written as follows:

x ∗ gθ = UGθ(Λ)UTx = Gθ(UΛUT)x = Gθ(L)x, (1)

where U is a matrix whose columns are the Eigenbases after
the Eigendecomposition of L = UΛUT , and Gθ(Λ) is a di-
agonal matrix, whose diagonal elements are a function of the
eigenvalues parameterized by θ. Based on this property, [8]
proposed a first-order approximation of (1), in terms of the
Chebyshev expansion of the graph Laplacian, as follows:

x ∗ gθ ≈ θ(IN +D−1/2AD−1/2)x. (2)

The generalized matrix-vector form of the graph convolutional
layer can then be expressed as follows:

X(l+1) = ÃX(l)Θ(l). (3)

This equation demonstrates that the graph inference can be ef-
ficiently presented by a simple layer-wise multiplication. X(l)

and X(l+1) are the input and output of a graph convolutional
layer, respectively, and Ã is a normalized adjacency matrix,
with self-connection added. It is worth noting that the learned
filters for graph convolution depend on the Laplacian eigen-
bases. In other words, the model is trained on a specific graph
structure, which cannot be applied to a graph with a different
structure. In [11], a more flexible model, known as graph
attention network, was proposed, which can adaptively learn
the graph structure, i.e. Ã in (3), by performing self-attention
without relying on the pre-defined adjacency matrix.

3. METHODOLOGY

3.1. Object Relation Graph Modeling

In our proposed model, an object relation graph is built on
top of any region-based detector. Consider an arbitrary graph
signal G = {V, E}, where V is the set of the region proposals,
such that |V| = N , and E is a set of edges with |E| = M .
Define Arelation, a self-adapted adjacency matrix of G, which

Fig. 1. The object detection task is regarded as a graph infer-
ence schedule, in which each node represents a RoI feature
and each connection indicates the relativeness between the
region proposals.

reflects the relations between each pairs of proposals by per-
forming self-attention. Thus, following (3), we can generate
our graph inference as follows:

X(l+1) = σ(ÃrelationX(l)Θ(l)), (4)

Ãrelationij =
exp(Arelationij)∑
k exp(Arelationik)

, (5)

where Ãrelation is a softmax-normalized matrix so that the
coefficients are comparable across edges, and σ(·) is an activa-
tion function. To this end, we aggregate the feature informa-
tion of each node in a graph, as well as its one-hop neighbors,
based on the node-to-node connections. We assume that the
connection between two neighboring nodes is governed by
an edge weight, which reflects the objects’ relationship and
can be adaptively learned during the graph inference. This
allows the aggregation to focus more on the relevant nodes that
have “stronger” relationships. The relationship is described by
the geometric relationship Rgij and the visual relationship Rpij
between the ith and jth proposals. We will show the specific
definition of Rg and Rp in the following section.

3.2. Geometric Relationship

We propose a geometric relation module, which aims to model
the spatial relationship between two RoIs, e.g. “a person on
top of a horse”, “a cup on a table”, and “a river under a bridge”
by calculating an geometric relation feature. This module takes
the RoIs’ relative geometric features as the input, and then
projects them into a subspace to measure how well they are
related, by multiplying with a geometric weight Wg ∈ Rdg×8,
where dg is the dimension of geometric relation feature, as
follows:

Rgij = ReLU(Wgr
g
ij). (6)

2538

Fig. 2. The architecture of the proposed object detector. First, we use a region proposal network to extract a fixed number of
RoIs. Each RoI is transformed into a fixed-size feature by performing RoI pooling. Then, two relation modules, GRU and VRU,
are applied to these RoIs and produce a relation matrix. Next, we parse the RoI feature with relation graph inference, which
in fact performs feature aggregation based on their relativeness. The output features are more representative compared to the
traditional fully connected network.

In order to make the geometric relation invariant to scale and
shifting, we define the relative geometric features as follows:

rgij =[wi, hi, wj , hj ,
‖cxi − cxj‖

wj
,
‖cyi − cyj‖

hj
,

log(
wi
wj

), log(
hi
hj

)]T,

(7)

where wi and hi are the width and height of the ith RoI, which
is normalized by the image scale, so that 0 < wi, hi < 1.
(cxi, cyi) is the center position of the ith RoI. ReLU is applied
to truncate the feature response by zero, so that it restricts the
relations between objects with certain geometric structures.

3.3. Visual Relationship

It is also necessary to model the co-occurrence of pairs of RoIs,
e.g. “a boat on a river” and “a mouse nearby a laptop”. In
other words, the visual relationships of the RoIs are modeled,
by measuring the impact from one RoI to another one based
on their visual cues. This can be achieved by performing self-
attention. The module input is a set of RoI features, X =
{x1, x2, ..., xN}, xi ∈ RF , where N is the number of RoIs
and F is the feature dimension. In order to obtain sufficient
representative power to describe the relations between two
RoIs, we concatenate the features from these two RoIs, and
transform the resulting feature into another high-dimensional
space. To this end, a sharable, learnable transformation matrix
Wv ∈ Rdv×2F is applied to each pair of RoI features, where
dv is the dimension of visual relation features. It can then be
calculated as follows:

Rvij = LeakyReLU(Wv[xi||xj]), (8)

where

LeakyReLU(x) =

{
0.01x if x < 0

x otherwise,
(9)

and || denotes the concatenation operation. These features
exhibit the significance of the jth RoI to the ith RoI based
on visual information, instead of structural information. For
example, Rvij should be large if xi and xj are the features
from the “chair” and the “table” RoIs, but small if they are
those from the “aeroplane” and the “boat” RoIs. Furthermore,
those RoI pairs with negative correlation should be suppressed
because the detector may generate false positives. Therefore,
LeakyReLU is used as the activation function.

3.4. Object Relation Graph Convolutional Network

The object relation coefficients are computed as the weighted
sum of the geometric and visual relation features as follows:

Arelationij =
Rgij · exp(Rvij)∑
mR

g
mj · exp(Rvmj)

. (10)

Given the object relation coefficients Arelationij between each
pair of nodes, we can form the feature aggregation among the
RoIs via a Relation Graph Convolutional (RGC) layer, which
allows every node to be impacted by every other node, based
on their object relationships. Similar to [11], we extend our
self-attention module in a multi-head manner. Specifically, we
execute the graph inference in (4) K times independently, and
concatenate the features to form the final output. To this end,
we can formulate our object relation graph convolutional layer
with “Algorithm 1”. In order to avoid gradient explosion, we
employ skip connections [13] for each graph convolutional
layer. The overall proposed architecture is illustrated in Fig. 2.

4. EXPERIMENT RESULTS

In this section, we evaluate the effectiveness of our proposed
RGC network on top of the Faster RCNN detector. We used
VGG-16 [14] as the feature extractor, and extracted 128 RoI

2539

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster RCNN (baseline) 68.95 68.31 77.06 65.22 54.73 53.32 76.06 79.52 80.31 48.23 72.92 64.73 77.86 80.52 75.02 76.17 39.42 65.23 64.77 75.66 71.25
Ours 70.83 77.44 79.09 71.55 53.79 59.61 74.94 85.82 82.76 52.74 75.07 62.01 81.89 85.79 78.14 75.87 41.16 66.93 67.38 72.96 71.74

Table 1. Detection results on the VOC 2007 test set, trained on 07 trainval.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Fast RCNN [9] 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
SSD500 [12] 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5
ION [4] 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
Faster RCNN (baseline) 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
Ours 76.1 79.0 79.6 74.9 65.9 63.1 86.0 87.4 86.7 61.3 80.0 73.2 83.6 85.5 79.4 79.2 52.1 74.3 72.6 82.2 75.1

Table 2. Detection results on the VOC 2007 test set, trained on 07 trainval + 12 trainval.

Algorithm 1 Relation Graph Convolution Layer. The number
of RoIs is N . The number of heads is H . Geometric trans-
formation matrix: W l

g ∈ Rdg . Visual transformation matrix
W l
v ∈ Rdv . Layer transformation matrix Θ(l) ∈ Rdout/H .

Input: input feature: X(l) ∈ RN×din , RoIs position
{wi, hi, cxi, cyi}i=0...N−1

1: for h in (0, 1, ..., H) do
2: Calculate Rg ∈ RN×dg using (6)
3: Calculate Rv ∈ RN×dv using (8)
4: Calculate Arelation ∈ RN×N using (9)
5: Normalization: Ãrelation = softmax(Arelation)

6: Calculate head output X(l+1)
h ∈ Rdout/H using (4)

7: end for
8: Concatenation:X(l+1) = [X

(l+1)
0 , ..., X

(l+1)
H−1]

Output: X(l+1) ∈ Rdout

features from an input image. Then, we replace the last two
fully connected layers with the proposed RGC layers. This
replacement introduces less than 5% of parameters, which is
negligible. We use the default hyper-parameters for Faster
RCNN, except that the learning rate for the proposed layers is
increased to 5e-3. Our method is implemented with PyTorch
[15], and our source code is available at https://github.
com/skyhehe123/RGC.pytorch.

4.1. Overall performance

We evaluate our detector on the PASCAL VOC [16] dataset,
which has 20 classes. VOC 2007 contains around 5K trainval
images and 5K test images, and VOC 2012 contains around
11K trainval images and 11K test images. We first compare
our algorithm to Faster RCNN, which is our baseline, on the
VOC 2007 test set, and trained on the “07 trainval” split. From
Tab. 1, we can see that the performance is improved by a
mAP of 1.88% after using our proposed module. We have
also conducted another experiment, which adds more training
data from the “trainval” split VOC 2012. As shown in Tab. 2,
our proposed method can achieve an excellent mAP of 76.1%
on VOC 2007, which exceeds most of the state-of-the-art
methods.

4.2. Object Relation Visualization

Fig. 3 shows the detected objects with large relation coeffi-
cients, after performing the non-maximum suppression. As
shown in the left image, the most related object to the “table”
is the “chair”, while “person” also exhibits high relativeness to
the “table”. The most related objects to the “bicycle” are the
“person” riding on the bicycle and another “bicycles” nearby.
It is worth noting that the coefficients obviously reflect the co-
occurrence between instances, as well as the spatial relation,
because an instance pair with more reasonable spatial distance
tends to give larger coefficients.

Fig. 3. Object relation visualization. The red line indicates
the existence of an object relationship between two bounding-
boxes. The coefficients reflect the relativeness of the object
pairs. For better visualization, we only show some of the
relation pairs with high coefficients.

5. CONCLUSION

In this paper, we proposed an enhancement module for object
detection, whose structure is based on an object relation graph.
The graph is constructed based on both the objects’ geometric
and visual relations, so that the features of a potential object
region can be enriched by aggregating the information from
other regions. Our experiments have shown the effectiveness
of our proposed module, and achieved a gain in terms of a mAP
by 1.88% on VOC 2007. Furthermore, we have validated that
our method can achieve better performance with more training
data.

2540

6. REFERENCES

[1] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detec-
tion,” in IEEE Computer Vision and Pattern Recognition
(CVPR), 2017, vol. 1, p. 4.

[2] C. H. He and K. M. Lam, “Fast vehicle detection with
lateral convolutional neural network,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 2341–2345.

[3] A. Buades, B. Coll, and J. M. Morel, “A non-local algo-
rithm for image denoising,” in IEEE Computer Vision
and Pattern Recognition (CVPR), 2005, vol. 2, pp. 60–
65.

[4] S. Bell, Z. Lawrence, K. Bala, and R. Girshick, “Inside-
outside net: Detecting objects in context with skip pool-
ing and recurrent neural networks,” in IEEE Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 2874–
2883.

[5] Z. Tu and X. Bai, “Auto-context and its application to
high-level vision tasks and 3d brain image segmentation,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 32, no. 10, pp. 1744–1757,
2010.

[6] X. Chen and A. Gupta, “Spatial memory for context
reasoning in object detection,” in IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 4086–
4096.

[7] C. Galleguillos, A. Rabinovich, and S. Belongie, “Object
categorization using co-occurrence, location and appear-
ance,” in IEEE Computer Vision and Pattern Recognition
(CVPR), 2008, pp. 1–8.

[8] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” International
Conference on Learning Representations (ICLR), 2016.

[9] R. Girshick, “Fast r-cnn,” in IEEE International Confer-
ence on Computer Vision (ICCV), 2015, pp. 1440–1448.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” in Advances in neural information processing
systems (NIPS), 2015, pp. 91–99.

[11] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio, “Graph attention networks,” 2018.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C. Y. Fu, and A. C. Berg, “Ssd: Single shot multibox de-
tector,” in Springer European Conference on Computer
Vision (ECCV), 2016, pp. 21–37.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in IEEE Computer Vi-
sion and Pattern Recognition (CVPR), 2016, pp. 770–
778.

[14] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” 2015.

[15] “Pytorch,” http://pytorch.org/.

[16] M. Everingham, L. V. Cool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes (voc)
challenge,” International journal of computer vision
(IJCV), vol. 88, no. 2, pp. 303–338, 2010.

2541

		2019-03-18T11:05:24-0500
	Preflight Ticket Signature

