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ABSTRACT

Modeling and analysis of information diffusion over networks
is of crucial importance to better understand the avalanche of
information flow over social networks and to investigate its
impact on economy and our social life. Different from prior
works that study rational behavior in information diffusion,
we focus on “irrational users”, e.g., those who always inten-
tionally forward fake news even when they know it contains
false information. We extend the graphical evolutionary game
model for information diffusion, and analyze the impact of
such irrational behavior on information propagation. Our
simulation results on synthetic networks are consistent with
our analytical results, and they show that even a few irrational
users can significantly increase the number of users who
adopt the forwarding strategy.

Index Terms— information diffusion, social networks,
irrational behavior, graphical evolutionary game

1. INTRODUCTION

Recently, the popularity of social networks and the advance
of mobile technology enable people to share information and
exchange opinions with each other anywhere and anytime.
They also provide a convenient channel for rumor spreading,
which may pose serious threats to our society. One example
is the “salt panic” in China after the 2011 Tohoku Tsunami,
where rumors circulated over internet forums, microblogs and
text messages triggered “panic-shopping of salt”, “long lines
and mob scenes at stores” and “10-fold jump of salt price”
throughout China [1,2]. Therefore, it is of crucial importance
to study how information propagates over networks, and to
design effective mechanisms to prevent the spreading of such
detrimental rumors.

There have been numerous works on the modeling and
analysis of information diffusion over social networks. A
classical work was the SIR model originating from the study
of epidemics [3], and there were many follow-up works [4–6].
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These works classified users into different groups: those
who had not heard the news, those who had received and
forwarded the news, and those who had stopped forwarding.
Using a few parameters to model the transition rates between
groups, their works derived the mean-field equations and
analyzed the dynamics of population in different groups. To
take collective behavior into consideration, the linear thresh-
old (LT) model was proposed in [7], where a user accepted
the information if the percentage of his/her neighbors who
adopted the information was above a threshold. The works
in [8–12] extended the LT model into different scenarios.
The authors in [13] proposed a graphical evolutionary game
theoretic framework to model information diffusion over
networks, and analyzed the evolutionary stable states.

The work in [13] assumed that all users were rational,
shared the same payoff and fitness functions, and used the
same rule to update their strategies. In real social networks,
we observe “irrational behavior”. For example, some users in-
tentionally spread the rumors even though they know the news
is fake. Their goals are different from others, e.g., they might
be paid to spread the rumors, and intuitively, their existence
may significantly impact the propagation of information. In
this paper, we extend the graphical evolutionary game model
for information diffusion in [13], and analyze the influence of
such irrational behavior on others’ decisions and information
propagation. We also estimate the average percentage of
irrational users needed to achieve a desired propagation state.
To our knowledge, this is the first work on game theoretic
modeling of such irrational behavior in information diffusion.
This investigation is critical to the understanding of user
behavior and rumor spreading in social networks, and to the
design of effective detection and defensive mechanisms.

2. GRAPHICAL EVOLUTIONARY GAME FOR
INFORMATION DIFFUSION

This section reviews the graphical evolutionary game model
for information diffusion in [13].

Graphical evolutionary game includes five basic elements:
graph structure, players, strategies, fitness (payoff) and evo-
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lutionary stable state (ESS). In the information diffusion
scenario, graph structure refers to the structure of the social
network where the news is propagated. Here, nodes represent
users and an edge connecting two nodes represents a certain
relationship between the two corresponding users. Graph
structure can be described by the degree distribution λ(k), the
probability of a randomly selected user having k neighbors.

Each user has two possible strategies in the game: forward
(Sf ) or do not forward (Sn) the information. The utility
function in the evolutionary game can be defined as “fitness”.
In the information diffusion scenario, users with larger fitness
values have a bigger impact on their neighbors, and more
users imitate their strategies. In [13], the fitness is defined
as π = (1 − α) + αU where α is a parameter with small
values. Following the works in [13–19], we consider the
scenario where α ≪ 1 in this work. U is the payoff received
from interactions with neighbors. When a pair of users meet
and both adopt strategy Sf , each receives payoff uff ; when
they both adopt strategy Sn, their payoffs are both unn, and
when two users with different strategies meet, they both get
the payoff ufn. The corresponding payoff matrix is

Sf Sn

Sf

Sn

(
uff ufn

ufn unn

)
. (1)

We consider the simple scenario where all users in the
network share the same payoff matrix and use the same fitness
function.

Users may change their strategies from time to time.
Following the work in [13], the strategy evolving process is
divided into time units. In each time unit, a user is randomly
selected as the focal user to update his/her strategy while
others keep theirs unchanged. We consider the imitation (IM)
update rule here, where the focal user can either imitate the
strategy of one neighbor or keep his/her own unchanged.
The probability that the focal user imitates a user’s strategy
(including his/her own) is proportional to that user’s fitness.

The whole population evolves under the IM strategy
update rule and finally reaches the evolutionary stable state
(ESS). To find and analyze the ESS, let pf and pn be the
proportions of users with strategy Sf and Sn, respectively.
At the ESS, the evolution dynamics satisfy ṗf = 0, that is,
the proportion of users with strategy Sf does not change. Let
p∗f denote the percentage of users with strategy Sf at the
ESS, which quantifies the extent to which the information

ffu fnu

ffu fnu

ffu fnu
nn nnu u

nnu

nnu

nnunnu

Fig. 1: Three different scenarios of the payoff values. Here
ũnn = 2ufn − uff .

is propagated across the network. Detailed analysis of pf ,
ṗf = 0 and p∗f can be found in [13] and omitted here.

3. INFORMATION DIFFUSION WITH IRRATIONAL
USERS

In this section, we consider the scenario where there exist
“irrational” users whose behavior is different from those in
Section 2, and who always forward the information. That is,
they always use strategy Sf and never change. The analysis
of the scenario where they always take strategy Sn and never
forward the information is similar and omitted.

We consider an N-user undirected and connected network
where the proportion of irrational users is q. We assume that
q is relatively small and these irrational users are randomly
distributed in the network. Compared to the model in [13],
with irrational users, the biggest difference is when these
irrational users are selected as the focal user, they will
never change their strategies. Unaware of the existence of
such irrational users, rational users assume that all users are
rational, and use the same rule as in [13] to update their
strategies. Thus, there always exist users who forward the
information, and intuitively, the information will potentially
reach more people and have a bigger impact.

Define δ1 = unn − uff and δ2 = ufn − uff . Following
the same analysis as in [13], we obtain the evolution dynamics
of pf as in (2). In (2), k is the average degree of the
network, and {v, w,m, s} are variables determined by the
graph structure. Detailed derivation can be found in [20].

In this work, we consider the scenario where uff is
smaller than ufn and unn. That is, the information is of little
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Fig. 2: ESS (p∗f ) in the three scenarios with q = 0.0025.

value to most users, and without irrational users’ forwarding,
it will only reach a small group of people and die out very
soon. We are interested in whether a few irrational users
can help change the propagation of such information and how
much more people it can reach. For the other two scenarios
where uff > ufn > unn and ufn > uff > unn in
[13], most people are interested in the information, and it
will propagate across the entire network with and without
irrational users. It is less interesting to our study and the
analysis is omitted here. Therefore, δ1, δ2 > 0, as shown
in Fig. 1.

From [13], pf should satisfy ṗf = 0 at the ESS. Also, q
of the entire population are irrational users who always use
strategy Sf , so p∗f should be in the range [q, 1]. In addition,
the second order derivative of pf should be negative at the
ESS to satisfy the stability requirement. Same as in [13], we
assume that k > 4 and α, q ≪ 1. From (2), the roots of
ṗf = 0 are: pf = 0, pf = 1, pf = x0 ≈ q, and the roots of
g(pf ) = 0. Note that the pole y0 in (2) will not influence the
ESS since y0 < q. Also p∗f cannot be 0 since p∗f ≥ q > 0. In
addition, we can show that pf = x0 ≈ q is an unstable state
and thus excluded from our analysis.

Therefore, the ESS candidates are 1 and the positive
root(s) of g(pf ) = 0. From (2), the roots of g(pf ) = 0 are

x± =
−γ1 ±

√
γ2
1 − 4γ2γ0

q
α

2γ2
. (3)

Note that γ0 > 0, and we can show that s(k− 3v) > 0. Thus,
depending on δ1 − 2δ2, γ2 = s(k − 3v)(δ1 − 2δ2) may take
different values, and there are three possible scenarios.
• Scenario 1 (S1): δ1 < 2δ2 and γ2 < 0
In this scenario, g(pf ) = 0 has only one positive root x−.
We can show that x− > q. If x− ∈ (q, 1), p̈f at x− and
1 are negative and positive, respectively, which indicates that
p∗f = x−. When x− ≥ 1, the only candidate for ESS is 1,
and we can show that p̈f < 0 at 1. Summarizing the above
analysis, the ESS in Scenario 1 is p∗f = min(x−, 1).

As shown in Fig. 1, unn is comparable to ufn and uff

in this scenario, and forwarding may potentially bring some
rewards to the users. Thus, some users may still consider
taking strategy Sf .
• Scenario 2 (S2): δ1 > 2δ2 and γ2 > 0
In this scenario, we can show that γ1 < 0, and the analysis
depends on ∆ = (γ2

1 − 4γ2γ0q/α).
- When ∆ < 0, g(pf ) = 0 has no real roots. The only

candidate for ESS is 1.
- When ∆ = 0, we can show that the only root of g(pf ) = 0

is not stable. The only candidate for ESS is 1.
- When ∆ > 0, both x− and x+ are positive. We can show

that g(q)g(1) < 0, x− ∈ (q, 1) and x+ > 1. Consequently,
both 1 and x− are candidates for ESS.

By checking p̈f at each candidate, the ESS in Scenario 2 is:

p∗f =

{
x−, ∆ > 0,
1, ∆ ≤ 0.

(4)

In this scenario, not forwarding has a much larger payoff
than forwarding, so compared to Scenario 1, fewer people
will take strategy Sf .
• Scenario 3 (S3): δ1 = 2δ2 and γ2 = 0
This is the boundary between Scenario 1 and Scenario 2,
and at this point, g(pf ) is a linear function whose root is
x3 = −qγ0/(αγ1). We can show that x3 > q. Similar to the
analysis in Scenario 1, we can show that the ESS in Scenario
3 is p∗f = min(x3, 1).
From the above analysis, the ESS p∗f is a non-decreasing
function of q. This is in agreement with the intuition that
when there are more irrational users who always forward,
more users will be influenced and adopt the strategy Sf . From
(2), the network structure will also affect the ESS, though
the analysis is much more complicated. We will show its
influence on the ESS via simulation results in the next section.

We also investigate from the information source’s per-
spective, and ask the following question: “If the information
is less interesting to users and is unlikely to spread across the
network without irrational users’ help, what is the minimum
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Fig. 3: ESS (p∗f ) in the three scenarios with k=10.

number of irrational users required to achieve a certain
desired ESS?”

Given the desired ESS p∗
f

, the payoff matrix, and the
network degree distribution λ(k), we can use (2) to calculate
the parameters γ2, γ1 and γ0. From the above analysis, on
average, we required at least

q = −α
γ1p

∗
f
+ γ2p

∗
f

2

γ0
(5)

of the users to be irrational to achieve the desired ESS.

4. SIMULATION RESULTS

This section shows our simulation results on synthetic net-
works. We consider three types of synthetic networks: regular
networks, Erdös Rényi (ER) random networks and Barabási-
Albert (BA) scale free networks. The network sizes are all
set to 2000, and 200 users (including irrational users) are
randomly selected to initially use strategy Sf , and the rest
use strategy Sn. α is set to 0.01. For each type of networks,
10 graphs are randomly generated, and 30 simulation runs are
conducted for each graph. In each simulation run, the IM
update rule is repeated until the network reaches the stable
state. We consider three different payoff sets corresponding
to the three scenarios in Section 3:
• S1: uff = 0.3, ufn = 0.5, unn = 0.4;
• S2: uff = 0.3, ufn = 0.5, unn = 0.9; and
• S3: uff = 0.3, ufn = 0.5, unn = 0.7.

First we let q = 0.0025, i.e., there are only 5 irrational
users, and change the average degree k to study the influence
of network structure on the ESS. We also use the ESS without
irrational users in [13] as the baseline. The result is shown
in Fig. 2. We can see that the analytical results match well
with the simulation results on all networks. We can also see
that p∗f decreases as the average degree k increases. This
is because when k increases, each rational user has more
neighbors who will influence his/her decision, and the impact

of irrational users is reduced. Also, with our simulation setup,
in Scenario 1, even 5 irrational users could cause at least 10%
more users to adopt the forwarding strategy for all three types
of networks. In Scenario 2 and Scenario 3, the information
is unlikely to spread without irrational users’ help. Now with
only 5 irrational users, the information is able to spread out
and there are about 3% to 15% users who will finally take the
forwarding strategy at the ESS.

Fig. 3 shows the simulation results when the average
degree k is fixed as 10 and when q changes from 0.001 to
0.1. Same as in Fig. 2, our simulation results match well
with our analytical results, and more irrational users can help
increase p∗f by a larger amount. Furthermore, from Fig. 3,
if we consider ER random networks with k = 10 and the
payoff values in S3, and set the desired ESS p∗

f
= 60%, both

simulation results and our analytical results in (5) show that
on average, q should be no smaller than 1.5%. We observe
the same trend for other parameter settings and other types of
networks.

In addition, from both Fig. 2 and Fig. 3, we observe that
among the three scenarios, Scenario 1 has a much larger p∗f
than Scenario 2, and that of Scenario 3 is in between. This is
consistent with our analysis in Section 3.

5. CONCLUSION

In this work, we study information propagation over social
networks, focus on irrational users who always forward the
information, and analyze their impact on the information
diffusion process. Our theoretical analysis and simulation
results show that a few irrational users can significantly
increase the number of users who adopt the forwarding
strategy. We also show that more irrational users and a
smaller average network degree will cause a wider spread
of the information. In addition, we investigate from the
information source’s perspective and derive the minimum
number of irrational users required to achieve the desired
propagation state.
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