
DATA POISONING ATTACKS AGAINST MRMR

Heng Liu and Gregory Ditzler

The University of Arizona
Dept. of Electrical & Computer Engineering

Tucson, AZ 85721
{hengl, ditzler}@email.arizona.edu

ABSTRACT

Many machine learning models lack the consideration that
an adversary can alter data at the time of training or testing.
Over the past decade, the machine learning models’ vulner-
ability has been a concern and more secure algorithms are
needed. Unfortunately, the security of feature selection (FS)
remains an under-explored area. There are only a few works
that address data poisoning algorithms that are targeted at
embedded FS; however, data poisoning techniques targeted
at information-theoretic FS do not exist. In this contribu-
tion, a novel data poisoning algorithm is proposed that tar-
gets failures in minimum Redundancy Maximum Relevance
(mRMR). We demonstrate that mRMR can be easily poisoned
to select features that would not normally have been selected.

Index Terms— Feature Selection, Information Theory,
Adversarial Learning

1. INTRODUCTION

Machine learning has been shown to be tremendously suc-
cessful in areas such as signal processing [1], spam filter-
ing [2, 3], malware detection [4, 5], etc. Unfortunately, the
security of machine learning models didn’t draw attention
until recently. In 2006, the security of the spam filtering
model in an adversarial environment was questioned for the
first time [6]. Therefore, more secure machine learning algo-
rithms are in high demands. Note that one important aspect of
machine learning is the preprocessing of the data and, unfor-
tunately, techniques such as feature selection (FS) has been
largely omitted from much of the adversarial learning litera-
ture. Furthermore, it is worth noting that FS plays a crucial
role in many tasks related to machine learning and data sci-
ence.

The vulnerability of machine learning along with counter-
measures against an adversary has been extensively studied
for over ten years with some of the earliest works being [7].
Biggio et al. proposed a taxonomy to model the adversary’s
behavior from three areas: goal, knowledge and capability
[8]. Generally, an adversary seeks to violate the security,
availability or privacy of machine learning models through

targeted (white-box) or indiscriminate (black-box) attacks.
The adversary’s knowledge may vary from Perfect Knowl-
edge (P-K) to Limited Knowledge (L-K) w.r.t. a model’s com-
ponents (e.g., training data, feature set, learning algorithm,
etc.). Moreover, the adversary may have different levels of
control over and access to the training and testing data.

There are typically two types of attacks: poisoning and
evading. Poisoning attacks seek to contaminate the training
data to mislead the learning algorithm at training time. Eva-
sion attacks, on the other hand, occur during testing time and
aim to evade detection for malicious data. There are many
works that focus on algorithms for evading and poisoning
a data sample against classifiers [8, 9]; however, far fewer
works exist for generating such attacks against feature selec-
tion [10–12]. In this contribution, we assume the adversary
has knowledge of the FS algorithm and has control over the
training data (e.g., the capability to read and write training
data samples).

Generally, FS methods are categorized into three cate-
gories: embedded, wrappers (classifier-dependent) and filters
(classifier-independent). Xiao et al. shed lights on the vulner-
ability of Lasso [13] via training poisoning [11,14,15]. Zhang
et al’ proposed an adversary-aware wrapper algorithm against
evasion attacks [12]. In this work, we examine the widely-
used mRMR’s [16], a filter FS algorithm, security against
training poisoning. mRMR uses the Mutual Information [17]
criteria to maximize the features’ relevancy w.r.t. the class
label and minimize the redundancy among selected features.
Equation (1) shows the objective that mRMR optimizes. Let
feature Fi be a feature that mRMR is evaluating to determine
if it should be selected and Fj be the a feature that has already
been selected.

JmRMR(Fi) =

relevancy︷ ︸︸ ︷
I(Fi;Y)−

redundancy︷ ︸︸ ︷
1

|S|
∑
Fj∈S

I(Fi;Fj) (1)

The objective in (1) has a trade-off between the relevancy of
a feature Fi and its redundancy with all of the other features
that have been selected. A feature is selected if it has the
largest mRMR score and the feature is added into S. This

2517978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

process is repeated until the desired number of features have
been selected.

2. POISONING MRMR

In this section, we set up the problem of feature selection with
an adversary then we propose an algorithm to manipulate mu-
tual information and the FS poisoning algorithm.

2.1. Problem Settings and Notations

Given two random variables (R.V.’s): F and Y , the outcome
spaces are f ∈ F and y ∈ Y , respectively (Conventionally,
probability theory uses “sample space”, we use “outcome
space” to avoid confusion with terms such as “data sample”).
Similarly, we denote the joint outcome space for R.V. pair
(F, Y) as Ψ = {(f, y) : (f, y) ∈ F ⊗ Y,P(f, y) 6= 0}. Note
that Ψ excludes the zero-probability joint outcomes (possibly
illegitimate) inF⊗Y . Using the above notations, the entropy-
based mutual information (MI) of (F, Y) is: I(F ;Y) =
H(F) +H(Y)−H(F, Y) where entropy is calculated based
on probabilities: H(F) = −

∑
f∈F P(f) logP(f) [18].

First, we seek to manipulate (drag down or drive up) the
MI of (F, Y) by injecting malicious data samplesDi ∈ D̂, i >
N to training data Di ∈ D, 1 ≤ i ≤ N , where N is the
number of training data samples. The injection satisfies the
following constraints: (a) we require the marginal outcomes
for F and Y among Di ∈ D̂ are from F and Y , respectively,
(b) we require the joint outcome of (F, Y) among the Di ∈ D̂
is from Ψ. The reasoning is that the feature selector can deem
an unrecognized outcome/joint outcome as illegitimate based
on prior knowledge. We formulate the above requirements
mathematically:

• The outcome spaces in D̂ for F and Y are denoted as
F2 (F2 ⊂ F) and Y2 (Y2 ⊂ Y), respectively. The
complementary subsets are: F1 = F\F2, Y1 = Y\Y2.

• (F, Y)’s joint outcome space in D̂ is denoted as Ψ2

(Ψ2 ⊂ Ψ). The complimentary subset is Ψ1 = Ψ\Ψ2.

2.2. Manipulating Mutual Information

We now analyze how the distributions and MI are influenced
by injecting malicious data samples D̂, then we shed lights
on determining D̂ such that the MI is manipulated as desired.
Here we use P(·)/P′(·) to denote the probabilities before/after
injection, respectively. Then we propose the Mutual Informa-
tion Poisoning (MIP) algorithm.

Consider that the injection of data happens gradually (one
by one), we use ρ to denote the incrementally injected data
samples number (ρ = 0, 1, 2, · · ·). Let λ(ρ) = N

N+ρ , then
we have λ(ρ) ≤ 1 because ρ ≥ 0. Furthermore, we assume
that λ(ρ) is a continuous function, which it is not, however, it

simplifies the mathematics. We only consider λ(ρ) meaning-
ful for ρ taking discrete values. To simplify notations, we use
λ directly to imply it is a function. We first write P′()’s for
f ∈ F1, y ∈ Y1 and (f, y) ∈ Ψ1 in terms of P()’s after ρ data
samples injected:

• ∀f ∈ F1, P′(f) = NP(f)
N+ρ = λP(f)

• ∀y ∈ Y1, P′(y) = NP(y)
N+ρ = λP(y)

• ∀(f, y) ∈ Ψ1, P′(f, y) = NP(f,y)
N+ρ = λP(f, y)

We still need the partial distributions for f ∈ F2, y ∈
Y2 and (f, y) ∈ Ψ2 to calculate I ′(F ;Y) after injection.
I ′(F ;Y) represents the mutual information after the dataset
has been poisoned and I(F ;Y) is the mutual information be-
fore the dataset has been poisoned. Here we discuss a simple
scenario to provide some insights: |F2| = |Y2| = |Ψ2| = 1
(note that this assumption is not necessarily the final solution).
Then the unknown partial distributions after injection can be
expressed as follows:

• F2 = {f∗},P′(f∗) = λP(f∗) + 1− λ

• Y2 = {y∗},P′(y∗) = λP(y∗) + 1− λ

• Ψ2 = {(f∗, y∗)},P′(f∗, y∗) = λP(f∗, y∗) + 1− λ

We now calculate the individual and joint entropies:

H ′(F) = −
∑
f∈F

P′(f) logP′(f)

= −
∑
f∈F1

λP(f) log (λP(f))−
∑
f∈F2

P′(f) logP′(f)

= −
∑
f∈F1

λP(f)(log λ+ logP(f))

− (λP(f∗) + 1− λ) log (λP(f∗) + 1− λ)

= −λ log λ
∑
f∈F1

P(f)− λ
∑
f∈F1

P(f) logP(f)

− (λP(f∗) + 1− λ) log (λP(f∗) + 1− λ) (2)

Similar for H ′(F) and H ′(F, Y):

H ′(Y) = −
∑
y∈Y

P′(y) logP′(y)

= −λ log λ
∑
y∈Y1

P(y)− λ
∑
y∈Y1

P(y) logP(y)

− (λP(y∗) + 1− λ) log (λP(y∗) + 1− λ) (3)

H ′(F, Y) = −
∑

(f,y)∈Ψ

P′(f, y) logP′(f, y)

= −λ log λ
∑

(f,y)∈Ψ1

P(f, y)− λ
∑

(f,y)∈Ψ1

P(f, y) logP(f, y)

− (λP(f∗, y∗) + 1− λ) log (λP(f∗, y∗) + 1− λ) (4)

2518

Let ∆ and β be the following:

∆ =
∑

(f,y)∈Ψ1

P(f, y)−
∑
f∈F1

P(f)−
∑
y∈Y1

P(y)

β =
∑

(f,y)∈Ψ1

P(f, y) logP(f, y)−
∑
f∈F1

P(f) logP(f)

−
∑
y∈Y1

P(y) logP(y)

Then I ′(F ;Y) can be expressed as:

I ′(F ;Y) = λ log (λ)∆ + βλ

− (λP(f∗) + 1− λ) log (λP(f∗) + 1− λ)

− (λP(y∗) + 1− λ) log (λP(y∗) + 1− λ)

+ (λP(f∗, y∗) + 1− λ) log (λP(f∗, y∗) + 1− λ) (5)

Recall that we expressed I ′(F ;Y) as a function Φ(λ, f∗, y∗)
of ρ through λ, and of (f∗, y∗) through its distributions. We
take partial derivative for Φ(λ, f∗, y∗) w.r.t. λ (note that al-
though Φ(λ, f∗, y∗) is differentiable w.r.t. λ, while it’s only
meaningful on discrete values of λ).

dΦ

dλ
= ∆ log λ+ β + (1− P(f∗)) log (λP(f∗) + 1− λ)

+ (1− P(y∗)) log (λP(y∗) + 1− λ)

+ (P(f∗, y∗)− 1) log (λP(f∗, y∗) + 1− λ) (6)

dΦ

dλ
|λ=1 = I(F ;Y)− log

P(f∗, y∗)

P(f∗)P(y∗)
(7)

Equation (6) shows the rate of changing of I ′(F ;Y) when
a particular (f∗, y∗) is injected ρ times ((7) denotes the po-
tential changing rate when ρ = 0 and it only depends on the
choice of (f∗, y∗) and the original MI I(F ;Y)). Therefore,
the derivative (7) can be used as a guide to choose (f∗, y∗) to
inject. We now present our strategy: Firstly, use (7) to find the
(f∗, y∗) that contributes to the maximal desired manipulation
of mutual information. Then MIP keeps injecting (f∗, y∗)
until the changing rate drops below a limit by monitoring (6)
(note that a negative derivative implies I ′(F ;Y) increases as
ρ augments because λ decreases as ρ increases, vice versa).
Then we find the next (f∗, y∗) using (7) after updating the
distribution. This process is repeated until a desired manipu-
lation is achieved or the injected data sample amount exceeds
a limit.

The MIP algorithm is given in Algorithm 1. In step 1, MIP
takes the following inputs: R.V.’s F, Y of length N ; desired
MI operation sig (+1/− 1 means increase/decrease); desired
manipulation extent δ; injection limit θ; changing rate limit
ε. In step 2, the distributions are calculated; the baseline is
set to the original MI; ρ and λ are set to 0 and 1; the length
before distribution evaluation L is initialized as N . In step 3,
we solve for (f∗, y∗) that contributes to the maximal desired
manipulation. Step 4 enters a for loop: we continue to inject

(f∗, y∗) to F, Y if the rate of changing of mutual information
is above the limit ε. Then MIP updates the derivative dΦ

dλ w.r.t.
updated λ (step 5-8). If the derivative drops below ε, MIP
recalculates the distributions w.r.t. F, Y and reset λ = 1, L =
L + ρ. The loop repeats the above procedures until a desired
manipulation is achieved |I(F ;Y) − standard| < δ or the
injected sample amount exceeds a limit x ≤ θ.
Algorithm 1 MIP pseudo-code

1: Input: R.V.’s F, Y of length N ; Operation sig = +1/−
1; Shift δ; Injection limit θ; Rate limit ε.

2: Initialization: Calculate P(f) : ∀f ∈ F ; P(y) : ∀y ∈ Y;
P(f, y) : ∀(f, y) ∈ Ψ; baseline = I(F ;Y); ρ = 0, λ =
1; Evaluated length L = N .

3: (f∗, y∗) = arg min(f,y)∈Ψ sig · dΦ
dλ |λ=1

4: for ρ ≤ θ or |I(F ;Y)− baseline| < δ do
5: if |dΦ

dλ | ≥ ε then
6: Insert (f∗, y∗) to F, Y ; ρ = ρ+ 1, λ = L

L+ρ

7: Update dΦ
dλ w.r.t. λ

8: else if |dΦ
dλ | < ε then

9: Re-calculate P(f), P(y), P(f, y) w.r.t. F, Y
10: θ = θ − ρ, L = L+ ρ, λ = 1, ρ = 0
11: (f∗, y∗) = arg min(f,y)∈Ψ sig · dΦ

dλ |λ=1

12: end if
13: end for

2.3. mRMR Poisoning Algorithm

Filter-based FS typically uses a greedy forward search algo-
rithm to avoid the intractable exhaustive search, which has
weaknesses that can be exploited by an adversary. For ex-
ample in mRMR, mistakes at the beginning can lead to learn-
ing failures because mRMR evaluates candidates’ redundancy
w.r.t. the previously selected features. We seek to poison the
first selected feature of mRMR in our algorithm: MIP poison-
ing against mRMR (MIPPAM).

Assume F is an arbitrary feature and F ′ is the feature
having maximal MI with label Y : F ′ = arg max {I(F ;Y)}.
If F 6= F ′, the MIPPAM algorithm’s objective is to drive up
I(F ;Y) and drag down I(F ′;Y) simultaneously such that
I(F ;Y)− I(F ′;Y) > 0. After the objective is optimized, F
will be the first feature selected that we refer to as “fake best”.

Assume f, f ′ and y are outcomes of F, F ′ and Y . We
solve the above objective by adopting MIP algorithm. Firstly,
MIPPAM takes three R.V.’s as inputs, sig is set to +1 (step
1). In step 2 we initialize three marginal and two joint dis-
tributions. Secondly, recall Φ(λ, f, y) denotes I(F, Y) af-
ter ρ (ρ = N(1−λ)

λ) (f, y)′s injected to F and Y . Thus,
Φ1(λ, f, y) − Φ2(λ, f ′, y) denotes I(F ;Y) − I(F ′;Y) after
ρ (f, f ′, y)′s injected to F , F ′ and Y . Thus, we use dΦ1−dΦ2

dλ

and dΦ1−dΦ2

dλ |λ=1 to adopt equations (6) and (7) in steps 3, 5,
7, 8, and 11, respectively. Finally, the loop in step 4 repeats
when ρ ≤ θ or I(F ;Y) > I(F ′;Y). The remaining feature
values are determined by choosing the nearest neighbors of

2519

2 4 6 8 10 12 14 16

Fi

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

n
s
is

te
n

c
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

In
je

c
te

d
 S

a
m

p
le

s

MPIPAM

(a) congress

2 4 6 8 10 12

Fi

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

n
s
is

te
n

c
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

In
je

c
te

d
 S

a
m

p
le

s

MPIPAM

(b) heart

5 10 15 20

Fi

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
s
is

te
n

c
y

0

0.05

0.1

0.15

0.2

0.25

In
je

c
te

d
 S

a
m

p
le

sMPIPAM

(c) parkinsons

5 10 15 20

Fi

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
o

n
s
is

te
n

c
y

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

In
je

c
te

d
 S

a
m

p
le

s

MPIPAM

(d) spect

Fig. 1. Consistency of 4 datasets where different “fake best” is used. X-axis are the “fake best” features sorted in descending
order of original mutual information with Y (Fi means the feature has ith MI with label), Y-axis are the corresponding Kuncheva
consistency.

the above output values of F, F ′ and Y .

3. EXPERIMENTS

In this section, we present a comprehensive evaluation of the
MIPPAM algorithm. In these experiments we run MIPPAM
algorithm on ten datasets where malicious samples are gen-
erated by MIPPAM then run mRMR on the same datasets
without adversarial data (i.e., benign and poisoned, respec-
tively). The performance of the FS algorithm is measured by
the stability of mRMR and classification accuracy. Informa-
tion about the datasets are shown in Table 1 and all exper-
iments are averaged by 30 bootstrap runs. Finally, mRMR
selects ten percent of the features for each dataset.

Note that MIPPAM algorithm require a manually selected
“fake best” to substitute the authentic best feature, we here
experiment all choices of “fake best” (e.g., all candidates ex-
cept the authentic best feature) and report the malicious se-
lected feature subset’s consistency with selection result on
benign dataset, for each choice of “fake best”. Moreover,
we report the required injected malicious sample amount for
each choice of “fake best”. We here use the Kuncheva index
(range in −1 ∼ 1) to measure the degree of agreement [19]
(high value implies high agreement), We report consistency
for 4 datasets (due to limited space) in Figure 1. The first
observation is, the MIPPAM algorithm can result in a gen-
eral disagreement on two selection results, where the poison-
ing extent relies on the choice of “fake best”. Moreover, as
the “fake best” feature’s mutual information decreases, the
required malicious sample amount increases.

In many machine learning tasks, FS is not the final ob-
jective and classification accuracy is the desired statistic. A
KNN and decision tree are trained on features selected on the
benign and malicious datasets. Note that we obtain different
FS results for various “fake best” features on each dataset;
therefore, we choose the “fake best” feature that leads to the
maximal decrease in the FS stability. Table 1 shows the test-
ing error for the benign and malicious datasets. (for selec-
tion on the malicious dataset, we report the injected sample
amount in parenthesis), we mark the failed poisoning cases
in boldface. The results show that MIPPAM can lead to a

Table 1. The testing error on ten datasets, the failed poisoning scenarios
are marked in boldface. For each dataset, we also report the injected sample
amount in parenthesis for corresponding “fake best”, which achieves the most
consistency decrement with FS result on the benign dataset.

Dataset #features #samples k-NN (k = 5) Decision Tree
Benign Poisoned Benign Poisoned

congress 16 327 0.0503 0.1062 (114) 0.0506 0.1123 (114)
heart 13 203 0.2343 0.2532 (38) 0.2139 0.2413 (38)
ionosphere 34 264 0.0969 0.1475 (42) 0.0843 0.1249 (42)
krvskp 36 2397 0.0738 0.3668 (780) 0.0640 0.3122 (780)
parkinsons 22 147 0.1556 0.1597 (37) 0.1368 0.166 (37)
pengcolon 2000 47 0.1711 0.2022 (21) 0.1667 0.1844 (21)
penglung 325 55 0.1722 0.1926 (23) 0.3481 0.3167 (23)
semeion 256 1195 0.2750 0.2663 (276) 0.2708 0.2839 (276)
spect 22 201 0.2071 0.2404 (17) 0.2035 0.2217 (17)
splice 60 2382 0.0980 0.1534 (775) 0.0606 0.1189 (775)

common decrease in the classification accuracy for both clas-
sifiers. We also observe that some datasets require a signifi-
cant amount of data to impact the error; however, the change
in error between the benign and poisoned datasets are quite
different. For example, splice and krvskp both have 775+ ad-
versarial samples, but the error for splice, krvskp increase 5%
and 30%, respectively.

4. CONCLUSIONS
The vulnerability of machine learning has been investigated
for over ten years, while the FS’s behavior in a malicious en-
vironment is an under-explored topic. In the meanwhile, the
ever-increasing scale of machine learning tasks heavily rely-
ing on FS to reduce the dimensionality of the data, which
becomes risky in a malicious environment. In this contri-
bution, we revisited the information-theoretic FS algorithm
mRMR and propose MIP algorithm that allows manipulating
the mutual information of two random variables by injecting
malicious samples, based on which we introduced the MIP-
PAM algorithm which led to a decrease in the consistency and
as well as classification accuracy. The future work includes
devising more general poisoning algorithm for information-
theoretic FS and proposing more robust FS objectives.

2520

5. REFERENCES

[1] K. G. Hartmann, R. T. Schirrmeister, and T. Ball, “EEG-
GAN: Generative adversarial networks for electroen-
cephalograhic (eeg) brain signals,” arXiv:1806.01875,
2018.

[2] D. Lowd and C. Meek, “Good word attacks on statistical
spam filters,” in Conference on Email Anti-Spam, 2005.

[3] A. Kolcz and C. H. Teo, “Feature weighting for im-
proved classifier robustness,” in Conference on Email
Anti-Spam, 2009.

[4] J. Gardiner and S. Nagaraja, “On the security of ma-
chine learning in malware c&c detection: A survey,”
ACM Computing Surveys, vol. 49, no. 3, 2016.

[5] W. Xu, Y. Qi, and D. Evans, “Automatically evading
classifiers: A case study on PDF malware classifiers,”
in Network and Distributed System Security Symposium,
2016.

[6] M. Barreno, B. Nelson, R. Sears, A. Joseph, and J. D.
Tygar, “Can machine learning be secure?,” in ACM Sym-
posium on InformAtion, Computer and Communications
Security, 2006.

[7] D. Lowd and C. Meek, “Adversarial maching learn-
ing,” in Proceedings of Knowledge and Data Discovery,
pp. 641–647, 2005.

[8] B. Biggio, G. Fumera, and F. Roli, “Security evaluation
of pattern classifiers under attack,” IEEE Transactions
on Knowledge and Data Engineering, vol. 26, no. 4,
pp. 984–996, 2013.

[9] F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks
and defenses,” arXiv:1705.07204, 2017.

[10] K. K. Budhraja and T. Oates, “Adversarial feature selec-
tion,” in IEEE International Conference on Data Mining
Workshop, pp. 288–294, 2015.

[11] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert,
and F. Roli, “Is feature selection secure against training
data poisoning?,” in International Conference on Ma-
chine Learning, 2015.

[12] F. Zhang, P. P. K. Chan, B. Biggio, D. Yeung, and
F. Roli, “Adversarial feature selection against evasion
attacks,” IEEE Transactions on Cybernetics, vol. 46,
no. 3, pp. 766–777, 2016.

[13] R. Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of Royal Statistics Society, vol. 58,
no. 1, pp. 267–288, 1996.

[14] C. Frederickson, M. Moore, G. Dawson, and R. Polikar,
“Attack strength vs. detectability dilemma in adversar-
ial machine learning,” in IEEE/INNS International Joint
Conference on Neural Networks, 2018.

[15] G. Ditzler and A. Prater, “Fine tuning lasso in an ad-
versarial environment against gradient attacks,” in IEEE
Symposium on Computational Intelligence and Data
Mining, 2017.

[16] H. Peng, F. Long, and C. Ding, “Feature selection based
on mutual information: criteria of max–dependency,
max–relevance, and min–redundancy,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 27, no. 8, pp. 1226–1238, 2005.

[17] C. E. Shannon, “A mathematical theory of communi-
cation,” The Bell System Technical Journal, vol. 27,
pp. 379–423, 1948.

[18] T. M. Cover and J. A. Thomas, Elements of Information
Theory. Wiley-Interscience, 2006.

[19] L. I. Kuncheva, “A stability index for feature selection,”
in International Conference on Artifical Intelligence and
Application, pp. 390–395, 2007.

2521

		2019-03-18T11:17:06-0500
	Preflight Ticket Signature

