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ABSTRACT
With an increasing number of wireless devices, the risk of be-
ing eavesdropped increases as well. From information theory,
it is well known that wiretap codes can asymptotically achieve
vanishing decoding error probability at the legitimate receiver
while also achieving vanishing leakage to eavesdroppers. How-
ever, under finite blocklength, there exists a tradeoff among
different parameters of the transmission. In this work, we pro-
pose a flexible wiretap code design for Gaussian wiretap chan-
nels under finite blocklength by neural network autoencoders.
We show that the proposed scheme has higher flexibility in
terms of the error rate and leakage tradeoff, compared to the
traditional codes.

Index Terms— autoencoder, neural networks, finite
blocklength, wiretap code, physical layer security

1. INTRODUCTION

For communication scenarios with a potential eavesdropper, it
is known that a communication with simultaneously vanishing
error probability and information leakage is asymptotically
possible, where the maximum achievable secrecy rate is called
the secrecy capacity, [1]–[3]. However, for finite blocklength
wiretap codes there exists a tradeoff between error probability
at the legitimate receiver, the amount of leaked information to
the eavesdropper, and the transmission rate, [4]. In this work,
a machine learning (ML) approach based on a feed-forward
neural network (FF-NN) autoencoder [5] is proposed, which
allows a flexible design for both the wiretap code encoder and
decoder. In particular, the tradeoff between the reliability and
leakage can be adjusted for fixed code parameters, which may
not be easily achieved by traditional error-correcting codes
(ECCs), [6]. Usually, for given blocklength n and number of
information bits k, there exists a fixed design scheme, e.g.
polar wiretap codes [7], which yields one particular codebook
with only one operating point in the reliability/leakage space.

The application of ML algorithms in communications has
gained increasing attention, recently. ML has already been
used to replace various parts in traditional communication
systems. In [8], the authors implemented convolutional neu-
ral networks for demodulation. Besides the application as a
demodulator, neural networks (NNs) have been used to suc-
cessfully decode channel codes, e.g. polar codes and random
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codes [9], linear codes [10], convolutional codes [11], and polar
wiretap codes [12]. A broader approach of replacing multiple
parts in the transmission chain has been taken in [13], where
the authors used an autoencoder to learn both the coding and
the decoding functions.

In this work, a framework based on NN autoencoders is
developed, which allows a flexible design of finite blocklength
wiretap codes. First, we can easily change the operating
point with respect to the tradeoff between block error rate
(BLER) and leakage by varying the weightings in the objective
function of the autoencoder. Therefore, we can easily attain
a higher flexibility than the traditional ECC, which has only
one operating point on the tradeoff plane given the code
parameters. Second, we can achieve a performance close to
that of the polar wiretap code by only one layer NNs for the
encoder and decoder part.

Notation: Random variables (of all dimensions) are de-
noted in boldface capital letter, e.g. M . Sets like codebooks
are denoted with calligraphic letters, e.g. C. The finite field
containing 2n elements is denoted as Fn2 and the real numbers
are written as R. The identity matrix of size n is denoted
as In. A Gaussian distribution with mean µ and covariance
matrix Σ is denoted as N (µ,Σ). The probability of event A
is denoted as Pr(A). The logarithm is with base 2.

2. SYSTEM MODEL

The model is shown in Fig. 1. Alice wants to transmit a
secret message M from a set M of possible messages to
the legitimate user Bob. The communication is monitored
over a second channel by a passive eavesdropper Eve. The
main channel between Alice and Bob and the eavesdropper’s
channel between Alice and Eve are assumed to be independent
additive white Gaussian noise (AWGN) channels with noises
NB and NE, respectively, with different noise powers such
that the wiretap channel is degraded, i.e. σ2

E > σ2
B. Bob

and Eve receive the signals Y and Z, respectively. Alice
applies a wiretap code to map the messages M ∈ Fk2 into
codewords X ∈ Rn. The codebook is denoted as C. Note
that here the domain of the codewords is different to the one
used in common ECCs. The codes found by the autoencoder
consist of vectors of length n of real numbers which might be
non-uniform and asymmetric, which is different to those from
the traditional encoding and modulation schemes as can be
seen in Table 1.

A measure to quantify the secrecy of the transmission
is the leakage I(M ; Z), which is the mutual information
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Fig. 1. System model of the wiretap scenario with AWGN
channels.

between the secret message M and the received signal Z at
the eavesdropper, [14]. It can be calculated as

I(M ; Z) = h(Z)− h(Z|M), (1)

where h denotes the differential entropy. To achieve the
strong secrecy, a binning structure [14] is used to construct
the wiretap code, i.e. r additional random bits are used to
map one secret message to multiple possible codewords. The
encoder function g is given as

g :M×M̃ → C , (2)

where the messages and random bits are from the setsM = Fk2
and M̃ = Fr2, respectively. The codewords are set as the
channel input without further prefixing.

Since Eve receives a noisy version of an n-dimensional
codeword, the distribution of Z is a Gaussian mixture (GM)

Z ∼
∑
µi∈C

ciN (µi, σ2
EIn), (3)

where the means µi ∈ C and the weights ci , Pr(µi is selected).
In the case of uniformly distributed messages, ci = |C|−1 for
all i. The conditional distribution of Z given the transmitted
message M = m is also an GM, where the means of the
components are all possible codewords for the individual
message m,

Z|M=m ∼
∑
µi∈Cm

N (µi, σ2
EIn). (4)

The subset of C containing only the codewords for message m
is denoted as Cm.

Since there is no known closed-form expression for cal-
culating the differential entropy of a GM, upper and lower
bounds from [15] are used to bound (1). With a slight abuse
of notation, the upper and lower bounds of the differential
entropy of an n-dimensional GM with K components are given
as

h̃UB(GM) = n

2 −
K∑
i=1

ci log
K∑
j=1

cjpj(µi) , (5)

h̃LB(GM) = n

2 + n

2 log 1
4 −

K∑
i=1

ci log
∑
j=1

Kcj p̃j,0.5(µi) , (6)

where pj and p̃j,α denote the Gaussian probability density
functions with mean µj and covariance matrices Σ and
Σ/ (α(1− α)), respectively.

After substituting Eq. (3) and (4) into Eq. (5) and (6),
respectively, we can express the leakage upper bound as

I(M ; Z) ≤ h̃UB(Z)− h̃LB(Z|M) (7)

= k + n− 1
2k+r

∑
µi∈C

log
∑
µj∈C

pµj (µi)

+ 1
2k+r

∑
m∈M

∑
µi∈Cm

log
∑
µj∈Cm

p̃µj ,0.5(µi). (8)

Note that we use an upper bound of the leakage as the worst-
case-scenario for training our system. Therefore, the perfor-
mance of our scheme can be better in practice.

The reliability at Bob is measured by the BLER which is
defined as the probability that the decoded message at Bob
M̂B is not identical to the message m transmitted by Alice,

BLER = Pr
(

M̂B 6= m|M = m
)

. (9)

The goal of the code design is to minimize both Eq. (8) and
(9) simultaneously. This is a multi-objective programming
problem (MOP) which can be solved by the scalarization
approach, i.e. minimizing the weighted sum [16],

min
C
w1BLER + w2I(M ; Z), (10)

with the positive objective weights w1, w2 ∈ R>0.

3. AUTOENCODER IMPLEMENTATION

The wiretap system model shown in Fig. 1 is implemented
by an autoencoder shown in Fig. 2. The autoencoder has
two vector inputs and two vector outputs. The first input
M contains k message bits mi ∈ Fk2 . The second input M̃
contains r uniformly random bits which are used to introduce
the confusion messages to the wiretap code. The outputs of
the network are the estimated message bits m̂i at Bob and
the leakage I(M ; Z) at Eve. The NN of the autoencoder
consists of an encoder part at Alice and a decoder part at
Bob. Both parts are deep FF-NNs [5] with the rectified linear
unit (ReLU) activation function on all layers but the last one.
The final output layer at Bob uses the sigmoid activation
function to ensure an output between 0 and 1. On top of the
last layer of the NN at Alice, a normalization layer is added
which centers and scales the data, to be zero mean and unit
variance. The two parts are separated by a noise layer which
adds Gaussian noise with a variance σ2

B to model the AWGN
channel between Alice and Bob. The second output of the
system, which is used for training, is at Eve. At this output,
the found codewords from the encoder output at Alice and the
noise variance of the wiretap channel σE are used to estimate
the leakage.

For training the network, a multi-objective loss function
according to Eq. (10) is considered. The goal of the network
is to minimize both the error probability at Bob as well as the
leakage at Eve simultaneously to ensure a secure transmission.
At Bob’s output, the mean squared error (MSE) is used as
a loss function LB. As shown in [9], minimizing this loss
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Fig. 2. Implementation structure of the autoencoder system for designing wiretap codes. Both the encoder and decoder at
Alice and Bob are implemented by FF-NN between which is a noise layer. As the second loss function, the upper bound of the
leakage at the eavesdropper is used.

function is also reducing the decoding errors. During training,
the power of the noise which is added in the channel to Bob
is fixed as a constant value to reduce the decoding error prob-
ability, cf. [9], [12]. At Eve’s output, the mutual information
I(M ; Z) between the messages M and the received symbols
Z is applied as a loss LE. Since the analytical derivation of
the leakage is not tractable, it is approximated as shown in
Eq. (7). In this work, the final loss function L to be minimized
is a weighted sum of the individual losses,

L = wBLB + w′ELE (11)

= wBLB + wE
k
LE . (12)

Since the leakage LE can be as high as k, it is normalized by
k to have both losses in L in the same range.

After training the system, the found wiretap codebook
(including modulation) is given as the output of the normal-
ization layer at Alice. Due to the random input bits, the code
has a binning structure, i.e. there exist multiple codewords
for each secure message.

3.1. Energy Calculation

The output of the training process is an encoder and decoder
system implicitly including the modulation and demodulation
steps. The codewords are modulated, centered, and scaled
to unit variance in a normalization layer after the NN at
Alice to fulfill the power constraint. The symbol energy ES is
calculated as

ES = 1
n2k+r

∑
µi∈C

‖µi‖2 , (13)

where ‖·‖ denotes the Euclidean norm. The signal-to-noise
ratio (SNR) in the following is defined as ES/N0.

3.2. Simulation Tools

The following tools are used for the simulations. The NNs are
implemented in Python3 using Keras [17] with TensorFlow [18]
as backend. All calculations were performed on a off-the-shelf
computer. The source code of the implementation for all
simulations can be found at [19].

4. SIMULATION RESULTS

The code parameters for the simulations are fixed by designing
a polar wiretap code with blocklength 16 according to [7] for
the AWGN channels to Bob and Eve with an Eb/N0 of 0 dB
and −5 dB, respectively. It yields a (16, 4, 3) code, where the
entries denote the blocklength n, number of secure bits k and
number of random bits r, respectively. The ES/N0 values
follow (k + r)Eb/(nN0). In the following, the SNR values
are assumed to indicate ES/N0, since the modulation scheme
of the codes found by the autoencoders does not follow any
classical one and may change between different symbols. Thus,
it is not easy to convert the symbol energy to the energy per
information bit.

The short blocklength of 16 has been chosen due to the
high complexity of the NNs. Usually, the training time com-
plexity is linear in the size of the training set [20], which in
this case is the size of the codebook |C|. Since the codebook
grows exponentially with the number of secure and random
bits, i.e. |C| = 2k+r, the training time complexity also grows
exponentially. In contrast, the complexity of a polar decoder
is O(n logn) [21].

The code parameters are applied to the autoencoder imple-
mentation described in Section 3 to generate wiretap codes for
the Gaussian wiretap channel. The varied hyperparameters
are the structures of the NNs of the autoencoder, the variance
of the added training noise, and the weight combination of
the different loss functions. The weights are chosen such that
wB , wE ≥ 0 and wB + wE = 1. The detailed settings of the
different autoencoders can be found in Table 2. The NN
layers are described by a tuple, where each entry represents
the number of nodes in the respective layer. The used training
algorithm is Adam [22] and the number of training epochs
is set to 104. After training, the system is tested with 106

messages from which the BLER at Bob is determined. Addi-
tionally, the leakage is approximated for the found codebook
using Monte Carlo simulations based on the implementation
from [15], [23]. The results for different autoencoders with
5 dB training SNR and a comparison to a polar wiretap code
can be found in Fig. 3. The curves show the individual re-
sults for different combinations of the weights, wB from 0.75
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C1 =


0.709 0.877 −0.775 −0.775 1.463 2.173 −0.775 −0.554 −0.121 −0.775 −0.775 −0.775 −0.775 0.129 −0.775 1.522
0.811 0.936 −0.916 −0.524 1.396 2.007 −0.824 −0.292 0.092 −1.031 −0.735 −0.625 −0.805 0.249 −1.210 1.472
0.776 0.902 −0.938 −0.614 1.417 2.084 −0.856 −0.301 0.026 −0.938 −0.790 −0.737 −0.820 0.246 −0.938 1.480
0.806 0.909 −0.883 −0.462 1.364 2.003 −0.757 −0.248 0.080 −0.957 −0.690 −0.580 −0.736 0.237 −1.533 1.447
0.700 0.852 −0.868 −0.695 1.439 2.109 −0.868 −0.289 −0.036 −0.868 −0.832 −0.730 −0.858 0.286 −0.868 1.526
0.745 0.870 −0.875 −0.520 1.385 2.025 −0.778 −0.225 0.036 −0.947 −0.713 −0.560 −0.755 0.281 −1.461 1.492
0.716 0.840 −0.987 −0.582 1.406 2.092 −0.779 −0.209 −0.014 −0.979 −0.738 −0.638 −0.740 0.294 −1.182 1.500
0.738 0.842 −0.839 −0.457 1.346 2.008 −0.711 −0.184 0.027 −0.873 −0.666 −0.515 −0.686 0.266 −1.755 1.458


Table 1. Found codewords for message 1 by AE1 with 5 dB training SNR and weights wB = 0.9999 and wE = 0.0001.

to 0.9999 in 20 logarithmically spaced steps. Additionally,
the point wB = 1 is evaluated. Since there exists a trade-
off for finite blocklength wiretap codes among blocklength,
rate, reliability and secrecy [4], the variation of the weights
allows a flexible operating point of the system for fixed code
parameters. One could set wB = 1 to design a regular point-
to-point code without any secrecy constraints or increase wE
to reduce the leakage, at the cost of reducing the reliability.
This tradeoff between leaked information and error rate is
clearly visible in Fig. 3. Our ultimate goal is to approach the
Pareto boundary of the design space, namely reliability and
secrecy. It can be seen that all tested autoencoders perform
slightly worse than the polar wiretap code. Note that the
performance is better, if the result is closer to the origin, i.e.
zero errors at Bob and zero leakage to the eavesdropper. The
polar wiretap code achieves a BLER of around 26.4 % and
a leakage around 1.33 bits. At a similar BLER of around
26.2 %, the first tested autoencoder (AE1 with 5 dB training
SNR) achieves a leakage around 1.46 bits. Note that this is
the smallest possible network structure, which has only one
layer of size n at Alice and one layer of size k at Bob. In all
simulations, the second evaluated autoencoder (AE2) achieves
similar results to the first one.

The results for different training SNRs all lie almost on the
same line, but in different segments. This means that some
hyperparameter settings can achieve a similar operating points
but at different weight combinations, while some points are
only achievable for particular hyperparameters. The lowest
BLER found for the evaluated settings is AE2 with −5 dB
training SNR at around 8.4 %. Even though the performance
of the code found by the autoencoder is no better than the
polar wiretap code for that specific operating point, we have
the advantage of the flexibility to tradeoff between the BLER
and leakage. Furthermore, since we only use at most two
layers for the NN, it may be possible to find a deeper NN
to outperform the polar wiretap code, which is our ongoing
work.

In Table 1 we show the codewords for message 1 (C1) found
by AE1 with 5 dB training SNR and weights wB = 0.9999
and wE = 0.0001. We can find that the alphabet is over the
real numbers which is different to the binary polar wiretap
code. More specifically, the alphabets are neither symmetric
nor uniform on the quadrature plane.

Name Encoder
Layers

Decoder
Layers Training SNR

AE1 (16) (4) -5, 2, 5, and 10 dB
AE2 (128, 64, 16) (128, 64, 4) -5, 2, 5, and 10 dB

Table 2. The evaluated autoencoders for a (16, 4, 3) wiretap
code.
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Fig. 3. Comparison of the designed wiretap codes by different
autoencoder structures with 5 dB training SNRs to a polar
wiretap code. The target code parameters are: n = 16, k = 4,
r = 3.

5. CONCLUSION

In this work, we showed that an autoencoder with a minimal
structure can provide us the flexibility of varying the operating
point on the leakage and BLER plane to design both wiretap
encoders and decoders, which cannot be done by traditional
ECC. In particular, a multi-objective loss function including
the reliability and total leakage has been formulated. Numer-
ical results show the influence of the weighting parameters,
the NN structure and the training SNR on the performance
of the communication system.

A comparison to a polar wiretap code showed that under
finite blocklength the found wiretap codes designed by ML
can perform close to the former for a specific operating point.
Improved results where the NNs outperform the polar wiretap
code can be found in [24]. It should be noted, that there is a
major difference between the codes found by the autoencoder
and the polar wiretap code. Namely, the used polar wiretap
code is binary with a binary phase-shift keying modulation,
while the NNs operate on the real numbers. It will be very
challenging to implement such a real-valued coding and mod-
ulation scheme on a real hardware system. Due to this major
difference between the polar code and autoencoder codes, a
comparison of the codes designed by the autoencoders with
theoretical boundaries would be preferable. Such a frame-
work can be found in [4], where the total variation distance
is considered as a metric for the leaked information. This
comparison will be part of our future work.
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