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ABSTRACT

ENF (Electric Network Frequency) oscillates around a nom-
inal value (50/60 Hz) due to imbalance between consumed
and generated power. The intensity of a light source pow-
ered by mains electricity varies depending on the ENF fluc-
tuations. These fluctuations can be extracted from videos
recorded in the presence of mains-powered source illumina-
tion. This work investigates how the quality of the ENF signal
estimated from video is affected by different light source illu-
mination, compression ratios, and by social media encoding.
Also explored is the effect of the length of the ENF ground-
truth database on time of recording detection and verification.

Index Terms— ENF, electric network frequency, video
forensics, time-of-recording

1. INTRODUCTION
In the modern era, images and videos can straightforwardly
be created, edited or manipulated. Consequently, developing
forensic tools for various tasks, e.g. forgery detection [1],
[2], watermarking [3], [4] camera attribution [5], [6] etc., has
become a significant field of research. ENF (Electric Network
Frequency) based forensic tools are among those emerging.

ENF oscillates about a nominal value (50/60 Hz) due to
instantaneous imbalance between consumed and generated
power [7]. The oscillation across the whole network at any
time instance is expected to be the same, which consequently
makes the ENF measured from any power outlet at a particu-
lar time instance unique to the network [8], [9]. The luminous
intensity of a light source powered by mains electricity al-
ternates in parallel with ENF fluctuations, except for the fact
that the frequency of the illumination is double the nominal
ENF, i.e., it illuminates in both positive and negative cycles
of electric voltage. The alterations in the luminance are in-
trinsically embedded in video recordings, and ENF can hence
be extracted through steady content analysis of these videos
[10], [11], [12], [13], [14], [15], [16].

Ambient conditions in the scene, and data properties may
have a noticeable impact on the quality of the ENF signal to
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Fig. 1. Spectra of various light sources [19]

Table 1. Different light types used in the recording scene

Source No Type Lum. Flux Color Temperature

S1 Halogen 834 (lm) 2800 (K)

S2 CFL 870 (lm) 6500 (K)

S3 CFL 840 (lm) 2700 (K)

S4 LED 810 (lm) 6500 (K)

S5 LED 810 (lm) 2700 (K)

be estimated from a video. Consequently, the performance of
ENF based forensic applications including time-of-recording
verification [11], [16], multimedia synchronization [17], [18],
camera characterization [14], [16], and ENF presence detec-
tion [15] may be affected by these conditions. This work
investigates how the performance of ENF based time-of-
recording detection and verification is affected by different
illumination sources, different compression ratios, and differ-
ent lengths of the reference ENF data (ground-truth).

2. IMPACT OF ILLUMINATION SOURCE ON ENF
This section investigates how the type of mains-powered il-
lumination source affects ENF signal estimation. Fig. 1 il-
lustrates emission spectra of various commonly used light
sources, namely Incandescent, white CFL (Compact Fluores-
cent), and white LED (Light-emitting Diode) [19]. From the
figure, it can be seen that Incandescent tungsten has a lower
level of power in blue light, though it has the greatest power in
red. CFL has a relatively lower level of power across the spec-
trum except for some distinguishable spikes, including green
and red. LED provides the highest power in blue light, though
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Table 2. Time-of-recording detection: AUC values for differ-
ent light sources

Clip Length (min.) S1 S2 S3 S4 S5

1 0.79 NA 0.32 0.45 0.65

2 0.74 0.48 0.79 0.94 0.91

5 1.00 0.85 0.87 1.00 0.99

10 1.00 1.00 1.00 1.00 1.00

relatively lower power in the red. Given these differences in
the power of wavelengths across the visible spectrum for dif-
ferent light sources, in the rest of this section we investigate
how the type of light source may affect the quality of the es-
timated ENF signal, and consequently, the ENF based time-
of-recording detection and verification. All experiments in
the paper are performed by using wall-scene videos recorded
under the different types of illumination by a fixed camera.

2.1. Estimation of ENF
The procedure for ENF signal estimation in this work is com-
posed of three consecutive steps. First, the time-series of in-
tensity variations along the video is constructed by averag-
ing all the pixels per frame, leading to one illumination sam-
ple per frame [10]. Next, STFT (Short Time Fourier Trans-
form) of these intensity variations is performed, followed by
quadratic interpolation [20]. For STFT computation, 20 sec-
onds time windows with 19 seconds overlaps are utilized,
consequently resulting in a 1-second temporal ENF resolution
[21]. A mains-powered light source peaks at both positive and
negative cycles of AC current, hence the main illumination
frequency is double the nominal ENF. It is also notable that
the sampling frequency of the above-mentioned time-series is
the same as the video frame rate. Hence, Nyquist theorem
[22] is not satisfied and ENF peak search in the Fourier do-
main has to be made around the alias frequency.

2.2. Evaluation Metrics
The primary metric used for video time-of-recording detec-
tion and verification is the supremum of normalized cross-
correlation (NCC). By using this metric, the estimated ENF
signal is searched in a reference ENF database (ground-
truth), and the lag point of the maximum NCC coefficient is
recorded. If the time lag at the peak correlation coefficient
corresponds to the time difference from the beginning time
of the reference ENF data, the day-and-time of the video
recording is verified. Otherwise, it is not verified. These
cases correspond to the following binary hypotheses:
H0: Lag point of the maximum correlation coefficient be-
tween the estimated video ENF and the reference ENF
(ground-truth) does not match with the video recording time.
H1: Lag point of the maximum correlation coefficient be-
tween the estimated video ENF and the reference ENF
(ground-truth) matches with the video recording time.

Table 3. The rates of correct time-of-recording estimations
(%) for different light sources

Clip L. (min.) S1 S2 S3 S4 S5

1 2.25 0.00 0.50 26.37 20.00

2 100 51.75 47.25 100 97.75

5 100 100 100 100 100

10 100 100 100 100 100

When an estimated ENF vector is searched in a reference
ENF data which does not include the correct time period of
the video, i.e. if it is the false reference ENF data, the lag
point of the peak NCC coefficient intrinsically corresponds to
the H0 case. Nevertheless, when searched on a reference ENF
data including the correct time period of the video, i.e. if it is
true reference ENF data, then the lag point of the peak NCC
coefficient may correspond to either H1 case (if the lag point
matches with the video time) or H0 case (if the lag point does
not match with the video time although the reference ENF
database includes the ground truth ENF data of the query
video). To measure the performance of the ENF signal de-
tection (localization) in a reference database, ROC (Receiver
Operating Characteristic) curves and AUC (Area Under the
Curve) are computed with the use of the above hypotheses for
various light sources, compression rates, and database search
lengths. In order to form the ROC curves, each estimated
video ENF signal is first searched on both true reference ENF
database (for H1 and H0) and false reference ENF database
(just for H0), and the peak correlation coefficient is recorded.

2.3. Experimental Setup and Results
In our experiments, five different types of light sources were
used for illumination. Some specifications of these sources
are provided in Table 1. Accordingly, S2 and S3 are white
and yellow CFL; S4 and S5 are white and yellow LED, re-
spectively. S1 is Halogen, which provides yellow color. Al-
though, not included in Fig. 1, there are almost no spectral
differences between the incandescent and the halogen lamps.

For each type of light source in Table 1, 4 still-scene (wall)
videos of about 10 minutes lengths were recorded at 30 fps
with 640 × 480 resolution by a Canon PowerShot SX210 IS
model CCD camera. Then, each recorded video was divided
into 1, 2, 5, and 10-minute clips yielding 10, 5, 2 and 1 video
clips of the respective lengths. In all, 40, 20, 8, and 4 video
clips of length 1, 2, 5, and 10-minutes were obtained for each
type of illumination source. For each clip, the ENF signal was
computed. For each estimated ENF, NCC is computed with
both a 24-hour true reference ENF data (involving the record-
ing time of the query video) and a 24-hour false reference
ENF data (not involving the the recording time of the video).
The NCC operation for each video ENF vector was repeated
20 times by taking the start point of the reference database 1
hour back or forward. That is, the start point and end point
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Table 4. Time-of-recording detection: AUC values for differ-
ent compression rates for LED

Bit Rate Average Size 2 min. 5 min. 10 min.

Original 938 MB 0.94 1.00 1.00

5000 Kbps 415 MB 0.94 1.00 1.00

1000 Kbps 94 MB 0.93 1.00 1.00

500 Kbps 53 MB 0.91 1.00 1.00

100 Kbps 20 MB 0.84 0.62 0.77

Facebook 13 MB 0.57 0.77 0.68

Table 5. The rates of correct time-of-recording estimations
(%) for different compression rates for LED

Bit Rate Average Size 2 min. 5 min. 10 min.

Original 938 MB 100 100 100

5000 Kbps 415 MB 100 100 100

1000 Kbps 94 MB 100 100 100

500 Kbps 53 MB 100 100 100

100 Kbps 20 MB 19.75 87.50 100

Facebook 13 MB 12.25 56.88 100

of the database were changed in each test. Then, ROC were
obtained for each light source type based on peak NCC dis-
tributions of H1 and H0 cases. Corresponding AUC values of
the ROC curves for each light source are given in Table 2.

It can be seen that S4 (white LED) and S5 (Yellow LED)
outperform other sources for all lengths of the ENF signal.
S2 (white CFL) and S3 (Yellow CFL) show relatively worse
performance. The reason for the low value of the AUC for
short length ENF signals is false matches due to the similar
variations of the successive ENF samples in time. ENF sig-
nals of greater length reduce the possibility of false matches,
yielding greater AUC values. Table 3 provides the rate (in
%) of correct time-of-recording estimation when ENF signal
is searched only in true reference database, i.e., the task of
time-of-recording verification. As can be seen from the table,
the results are parallel to those presented in Table 2. Conse-
quently, different light sources contribute to the quality of the
estimated ENF signal differently. ENF is best estimated for
videos recorded under LED illumination, though the quality
of the ENF signal significantly drops under CFL illumination.
For the rest of the paper, all the experiments were conducted
using the light sources that lead the best and the worst perfor-
mances, i.e. white LED and CFL only.

3. THE EFFECT OF COMPRESSION ON ENF

In this section, the effect of video compression on the ENF
signal is investigated. Of the videos used in Section 2.3, those
captured under white LED (S4 in Table 2) and white CFL (S2
in Table 2) were compressed at various bit rates; specifically

Table 6. Time-of-recording detection: AUC values for differ-
ent compression rates for CFL

Bit Rate Average Size 2 min. 5 min. 10 min.

Original 973 MB 0.48 0.85 1.00

5000 Kbps 430 MB 0.55 0.89 1.00

1000 Kbps 98 MB 0.66 0.89 1.00

500 Kbps 55 MB 0.11 0.66 1.00

100 Kbps 20 MB failed failed 0.98

Facebook 14 MB failed failed failed

Table 7. The rates of correct time-of-recording estimations
(%) for different compression rates for CFL

Bit Rate Average Size 2 min. 5 min. 10 min.

Original 973 MB 51.75 100 100

5000 Kbps 430 MB 61.00 100 100

1000 Kbps 98 MB 42.50 100 100

500 Kbps 55 MB 6.00 100 100

100 Kbps 20 MB 0 0 51.25

Facebook 14 MB 0 0 0

5000 Kbps, 1000 Kbps, 500 Kbps and 100 Kbps with the use
of FFMPEG via the H.264 compression standard. In addi-
tion, a Facebook compressed form of each video was created
by sequentially uploading to and downloading from its web-
site. For each compression type, the original video resolution
was maintained. Next, each of the compressed videos was
divided into 2, 5 and 10-minute clips and peak NCC distribu-
tions for H0 and H1 cases were obtained in the same way as
described in Section 2.3, followed by the computation of the
ROC curves. Table 4 provides AUC values for LED case. As
can be observed from the Table, up to a rate of 500 Kbps, the
performance of time-of-recording detection is quite well for
almost all size of video clips. Compression at 100 Kbps and
Facebook uploads decreased the detection performance no-
ticeably. Table 5 provides the rate (in %) of correct matches,
when the estimated ENF signals were searched in the true ref-
erence database only. Accordingly, similar trend in the results
are seen, except for the performance for 10-minute clips with
100% success rate for all types of compression.

Table 6 and Table 7 respectively provide AUC values and
the rate (in %) of correct matches for CFL case. Although,
the time-of-recording detection performance for compression
with 5000 Kbps, and 1000 Kbps is almost stable over all sizes
of video clips, compression at 100 Kbps and Facebook up-
loads cause a total failure in the performance of both detec-
tion (Table 6) and verification (Table 7), for 2-minute and
5-minute clips. Although Facebook compression causes a
failure for 10-minute clips, verification performance for com-
pression with 100 Kbps is acceptable with a 51.25% true de-
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Table 8. Time-of-recording detection: AUC values for differ-
ent lengths of ground-truth ENF data for LED

Database Length 2 min. 5 min. 10 min.

One-day 0.94 1.00 1.00

One-week 0.91 1.00 1.00

One-month 0.82 1.00 1.00

Table 9. The rate of correct time-of-recording estimations
(%) for different lengths of ground-truth ENF data for LED

Database Length 2 min. 5 min. 10 min.

One-day 100 100 100

One-week 100 100 100

One-month 100 100 100

tection rate (Table 7). The high AUC value, 0.98, for com-
pression with 100 Kbps in the detection task, Table 6, is re-
sulted because the values of H0 and H1 cases are obtained
considerably separate from each other, despite the number of
H1 cases, i.e. correct matches are only a half of the H0 cases.
Consequently, the verification task clarifies some unexpected
AUC values by providing the number of correct matches.

4. EXPERIMENTS WITH GROUND-TRUTH ENF OF
DIFFERENT LENGTHS

This section explores how the length of the reference ENF
data (ground-truth), in which the estimated ENF signal is
searched, affects the time-of-recording estimation depending
on the length of the estimated ENF vector. Of the videos in
Section 2.3, those captured under white LED and white CFL
were divided into 2, 5 and 10-minute clips. ENF signal was
extracted from each video clip and searched within one-day,
one-week, and one-month length correct and false reference
ENF data. Each search was repeated 20 times by taking the
start point of the reference database signal 1 hour, 8 hour, and
24 hours back or forward respectively for one-day, one-week
and one-month length reference data. That is, start point and
end point of the databases was changed in each test as in
Section 2.3. Next, peak NCC values for H0 and H1 cases
were obtained as described in Section 2.3, followed by the
computation of ROC curves. Table 8 provides AUC values
for LED cases. Accordingly, detection performance drops as
the length of the reference ENF data increases for 2-minute
videos. For 5-minute and 10-minute videos, detection per-
formance is quite stable for all lengths of the reference data,
yielding AUC values of 1.00. Table 9 provides rates (in %) of
correct estimations of time-of-recordings obtained when the
estimated ENF signals are only searched in the true reference
database. Surprisingly, 100% success rate is obtained for all
lengths of video clips and all lengths of reference data.

Table 10 and Table 11 respectively provide AUC and the
rate of correct detection (in %) for CFL light. Accordingly,

Table 10. Time-of-recording detection: AUC values for dif-
ferent lengths of ground-truth ENF data for CFL

Database Length 2 min. 5 min. 10 min.

One-day 0.48 0.85 1.00

One-week 0.45 0.80 1.00

One-month 0.38 0.75 1.00

Table 11. The rates of correct time-of-recording estimations
(%) for different lengths of ground-truth ENF data for CFL

Database Length 2 min. 5 min. 10 min.

One-day 51.75 100 100

One-week 27.50 100 100

One-month 11.00 98.13 100

overall, the performance rates of both detection and verifi-
cation decrease as the length of the reference ENF data in-
creases for 2-minute videos. Although the detection perfor-
mance slightly drops for 5-minute videos, the verification per-
formance is quite stable for all lengths of the ENF reference
data. For 10-minute videos, the performance rates are very
stable, leading to 100% estimation rate, for all lengths of
video (2,5,10 minutes) and reference data.

5. CONCLUSION

In this work, factors affecting ENF based time-of-recording
estimation for digital video, i.e. type of light source, video
compression rate, length of video, and length of ENF database,
is investigated with experimental analysis. It is observed that
different type of light sources affect the quality of the es-
timated ENF signal differently. Although ENF estimation
and time-of-recording verification are quite robust for 500
Kbps compression rates, the performance of the verification
varies depending on the type of light source. For instance,
best verification results are observed under the white LED
illumination. On the other hand, CFL yields the worst results
according to the experimental analysis. Another observation
is that for two minutes Facebook videos, ENF based video
time-of-recording verification fails for both CFL (0%) and
LED cases (12%) in the experiments.

This work may pave the way for the application of light
source detection and verification. Such an application may
also inspire research in ENF based tamper detection by doing
ENF analysis for different contents in video.1

1Acknowledgement: This material is based on research sponsored by
DARPA and the Air Force Research Laboratory (AFRL) under agreement
number FA8750-16-2-0173. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of DARPA
and the Air Force Research Laboratory (AFRL) or the U.S. Government.
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