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ABSTRACT
In this paper, we investigate the adversarial robustness of
subspace learning problems. Different from the scenario ad-
dressed by classic robust algorithms that assume fractions of
data are corrupted, we consider a more powerful adversary
who can observe the whole data and modify all of them. The
goal of the adversary is to maximize the distance between the
subspace learned from the original data set and that learned
from the modified data. We characterize the optimal rank-one
attack strategy and show that the optimal strategy depends on
the smallest singular value of the original data matrix and the
adversary’s energy budget.

Index Terms— Principal component analysis, subspace
learning, adversarial robustness

1. INTRODUCTION

Subspace learning has applications in many areas such
as surveillance video analysis, recommendation system ,
etc [1, 2, 3]. Furthermore, many interesting work have pro-
posed robust subspace learning algorithms that are capable of
mitigating the impact of random noise or certain percentage
of outliers presented in the data set [4].

Motivated by the fact that machine learning algorithms
are being increasingly used in safety critical applications and
security related applications [5, 6, 7], we investigate the ad-
versarial robustness of subspace learning algorithms. In par-
ticular, we examine the robustness of subspace learning al-
gorithms against not only random noise or unintentional cor-
rupted data, but also malicious data produced by powerful ad-
versaries who can modify the whole data set. Our study is
related to the growing list of interesting papers on adversar-
ial machine learning. These papers have revealed that many
learning algorithms are vulnerable to adversaries [8, 9, 10,
11]. One notable instance is the adversarial example phe-
nomenon [12, 13, 14] in deep learning where an adversary
can introduce small but carefully crafted changes into the im-
ages so as to mislead the neural network to make incorrect
decisions.
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In our problem formulation, given the original data matrix
from which we will learn a low dimension subspace via prin-
cipal component analysis (PCA), a powerful adversary can
modify all entries of this data matrix. The goal of the adver-
sary is to maximize the distance between the subspace learned
from the original data matrix and the subspace learned from
the modified data matrix. In this paper, we use Asimov dis-
tance to measure the distance between subspaces. We assume
that the adversary can use the whole data set to carefully con-
struct a rank-one attack matrix and add it to the original data
set. We characterize the optimal attack strategy in terms of
the adversary’s energy budget and its impact on the learned
subspace. We show that the optimal adversarial strategy de-
pends only on the smallest singular value of the original data
matrix. If the energy budget is larger than the smallest singu-
lar value, the attacker can construct an attack matrix to make
the Asimov distance to be π/2, the largest possible value. If
the energy budget is less than the smallest singular value, we
show that the optimal attack matrix must adopt a certain form
and the corresponding Asimov distance is directly related to
the ratio between the energy budget and the smallest singular
value. Our numerical example demonstrates that the proposed
attack strategy is much more effective than the strategy pro-
posed by an interesting related work [12] that studies how to
add one adversarial data sample to influence the subspace es-
timated by PCA. Our study reveals that subspace learning via
PCA is very sensitive to adversarial attacks. It is important
to design adversarially robust subspace learning algorithms,
which will be the focus of our future research.

2. PROBLEM FORMULATION

In this section, we introduce the problem formulation. Given
a data matrix X = [x1,x2, · · · ,xn] with each xi ∈ Rd, our
goal is to learn a low dimension subspace via PCA. In this
paper, we consider an adversary setup in which an adversary
will modify the data matrix X to X̂ = X + ∆X. Let X
be a k-dimensional subspace learned from X and Z be a k-
dimensional subspace learned from the modified data X̂. The
goal of the adversary is to design the modification matrix ∆X
so as to make the distance between X and Z as large as pos-
sible. To measure such distance, we use the largest principal
angle between X and Z as defined below [15].
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Definition 1. Let X and Z be two k-dimensional subspaces
in Rd, the principal angles {θi}ki=1 are defined recursively:

cos(θi) = max
ui∈X,vi∈Z

u>i vi

s.t. ‖ui‖ = ‖vi‖ = 1,

u>j ui = v>j vi = 0,∀ j = 1, 2, · · · , i− 1.

It is easy to see 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π/2.
Here, we use the largest principal angle θk as the distance
between two subspaces. This distance is also called Asimov
distance. In the following, we will use θ(X, X̂) or simply θ
to denote the Asimov distance between the subspace X esti-
mated from X and the subspace Z estimated from X̂. Given
orthonormal bases UX of X and orthonormal bases UZ of
Z, {cos(θ1), cos(θ2), · · · , cos(θk)} are the singular values of
U>X UZ [15]. Hence, the Asimov distance is determined by
the smallest singular value of U>X UZ.

It is easy to see that, if no constraint is imposed on ∆X,
then X̂ can be arbitrary and hence θ can be easily made to
be π/2. In this paper, to make an initial attempt to under-
stand the adversarial robustness of subspace learning algo-
rithms, we impose energy and rank-one constraints on ∆X.
In particular, we assume that the attack matrix ∆X is a rank
one matrix, and the energy of ∆X is less than or equal to η.
In this paper, we use the Frobenius norm ‖∆X‖F to measure
the energy. We note that the rank-one constraint is already
powerful enough to capture the common modifications, for
example, modifying one data sample, inserting one adversar-
ial data, deleting one feature etc.

Formally, the optimal attack matrix that maximizes the
Asimov distance between the subspace estimated from the
original data set X and that from the modified data set X̂
under the constraints mentioned above can be written as

max
a∈Rd,b∈Rn

: θ(X, X̂) (1)

s.t. X̂ = X + ∆X,

∆X = ab>, (2)
‖∆X‖F ≤ η. (3)

Here, (2) is the rank-one constraint, and (3) is the energy con-
straint. It is easy to see that, for any feasible solution (ã, b̃)
with ||b̃|| 6= 1, we can construct another feasible solution
(||b̃||ã, b̃/||b̃||) that gives the same objective function value.
Hence, without loss of optimality, we will fix the norm of b
to be 1 throughout of the paper.

3. OPTIMAL ADVERSARIAL STRATEGY ANALYSIS

In this section, we characterize the optimal solution to (1).
We will first present our solution for the case where X has
full column rank, and then generalize the result to the case
where X does not necessarily have full column rank.

3.1. Full-Rank Case

In the full column rank case, rank(X) = n, where n < d.
This case arises when the number of samples is limited, for
example, at the beginning of online PCA. In the following,
we first find the expression of θ(X, X̂) for any given X̂ =
X + abT . Using this expression, we then characterize the
optimal attack matrix ∆X.

Suppose the compact SVD of X is X = UΣV> = UW,
where Σ = diag(σ1, σ2, · · · , σn). So, one set of orthonormal
bases for the column space of X is U. We can also use SVD
to find a set of orthonormal bases Ũ of span(X̂).

Since X̂ = X + ab> and according to [16], Ũ can be
directly expressed as a function of U:

Ũ = U + (αUw + βs)w>,

where

au⊥ = (I−UU>)a, s =
au⊥

‖au⊥‖
, w̃ = −W−>b,

w =
w̃

‖w̃‖
, ω =

1

‖au⊥‖
(1− a>Uw̃), g = [w̃, ω]>,

α =
|ω|
‖g‖
− 1, β = −sign(ω)

‖w̃‖
‖g‖

.

Here W−> = (W−1)>. With this closed form expression
for Ũ, we have

U>Ũ = U>(U + (αUw + βs)w>) = I + αww>.

The singular values of I+αww> are {1, 1, · · · , 1+αw>w}.
Since w>w = 1, 1 + α = |ω|

‖g‖ , the smallest singular value

of U>Ũ is cos(θ) = |ω|
‖g‖ . Our objective is to maximize θ,

which is equivalent to minimize the smallest singular value of
U>Ũ. Hence, the optimization problem (1) is simplified to

min
a,b

:
|ω|
‖g‖

s.t. ‖ab>‖F = ‖a‖2‖b‖2 ≤ η,

where we use the identity ‖a‖2‖b‖2 = ‖ab>‖F. Expanding
the objective function, we have

|ω|
‖g‖

=
|1 + a>uW−>b|

‖[‖au⊥‖W−>b, 1 + a>uW−>b]‖
, (4)

where au = U>a.
Since W = ΣV>, we have W−>b = Σ−1V>b. As

V is an unitary matrix, changing the coordinate b ⇐ V>b
does not change the constraint. So the value a>uW−>b in
the original coordinate is the same as a>uΣ−1b in the new
coordinate. In the following, we will use this new coordinate
system and hence the cost function in (4) can be written as

|ω|
‖g‖

=
|1 + a>uΣ−1b|

‖[‖au⊥‖Σ−1b, 1 + a>uΣ−1b]‖
. (5)
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The objective function (5) is zero if and only if the numer-
ator is zero. Using the matrix norm inequality, we have

|a>uΣ−1b| ≤ ‖au‖2‖b‖2‖Σ−1‖2 =
1

σn
‖au‖2‖b‖2

(a)

≤ 1

σn
‖a‖2‖b‖2 =

1

σn
‖ab>‖F

(b)

≤ η

σn
,

where in (a) we use ‖au‖2 ≤ ‖a‖2, and (b) is due to the en-
ergy constraint. From the inequalities we conclude that when
η < σn, we can not make the numerator to be zero. We now
consider two different cases depending on whether we can
make the numerator to be zero or not.
Case 1: When η > σn, if we set

au = [0, 0, · · · ,−σn]>,b = [0, 0, · · · , 1]>,

and any ‖au⊥‖22 = â2 with 0 < â2 < η2− σ2
n, the numerator

will be zero. Since a = Uau + (I−UU>)au⊥ , the attacker
can make the Asimov distance to be π/2 by setting:

a = −σnun + âuq,b = vn, (6)

where uq is any vector orthogonal to the column space of X
and 0 < â2 < η2 − σ2

n.
Case 2: When η ≤ σn, the value of 1 + a>uΣ−1b can not
reach zero. In this case, it is easy to check that minimizing (5)
is equivalent to maximizing

‖au⊥‖22‖Σ−1b‖22
(1 + a>uΣ−1b)2

. (7)

With the norm of b being 1, ‖Σ−1b‖22 is maximized when
b = [0, 0, · · · , 1]>. Furthermore, for any fixed norm of au,
(1+a>uΣ−1b)2 is minimized when au = [0, 0, · · · ,−‖au‖2]>,
b = [0, 0, · · · , 1]>. Hence, for any fixed norms of au, au⊥ ,
the objective function (7) is maximized when

au = [0, 0, · · · ,−‖au‖2]>, b = [0, 0, · · · , 1]>. (8)

Let c = ‖au⊥‖2, h = ‖au‖2, and use the optimal form of au
and b in (8), the objective function (7) can be simplified to

max
c,h

:
c2/σ2

n

(1− h/σn)2

s.t. (c2 + h2) ≤ η2, (9)

It is easy to check that the objective function is maximized
when c2 + h2 = η2. Hence, we have c2 = η2 − h2. In-
serting this value of c into the objective function and setting
the derivative with respect to h to be 0, we get a unique so-
lution h = η2/σn. At this value of h, the second derivative
is −2σ2

n

(σ2
n−η2)3

, which is negative. It indicates that h = η2/σn

is indeed the maximum point. Hence c = ±η
√
1− η2/σ2

n.
This implies that the optimal solution of problem (1) for Case
2 is

a = −η2/σnun ± η
√
1− η2/σ2

nuq,b = vn. (10)

Combining Cases 1 and 2, we have that the optimal value
of problem (1) in the full-rank case is

θ∗ =

{
π/2, if η > σn

arcsin (η/σn), if η ≤ σn
. (11)

3.2. Low-Rank Case

We now consider the case where X is not full rank. Let
k < min(d, n) be the rank of X, and denote function gk(·)
as the PCA operation that computes the k leading principal
components. In this subsection, with a slight abuse of no-
tation, we write the full SVD of X as X = UΣV>. The
optimal attack matrix could be found by solving

max
a∈Rd,b∈Rn

: θ(X, gk(X̂)) (12)

s.t. X̂ = X + ab>,

‖a‖2‖b‖2 ≤ η.

We can further simplify this optimization problem as

max
a∈Rk+1,b∈Rk+1

: θ(Σ̃, gk(Y)) (13)

s.t. Y = Σ̃ + ab>,

‖a‖2‖b‖2 ≤ η,

where Σ̃ = diag(σ1, σ2, · · · , σk, 0) and {σ1, σ2, · · · , σk} are
singular values of X. Due to the space limitation, we omit
the detailed proof of the equivalence between (12) and (13)
and only provide the main idea of the proof here. The main
idea of the simplification is to left multiply the unitary matrix
U> and right multiply the unitary matrix V on both X and
X̂. Note that multiplying a unitary matrix does not change the
column space and its singular values. In addition, a rank-one
modification can only add at most one principal component
orthogonal to its original column subspace. Hence, by chang-
ing the coordinates, a and b are (k+1)-dimensional vectors.

When η > σk, it is simple to verify that the simple so-
lution a = [0, 0, · · · , η]>, b = [0, 0, · · · , 1, 0]> leads to the
maximal Asimov distance, which is π/2.

When η ≤ σk, the following theorem characterizes the
form of optimal a and b.

Theorem 1. There exists an optimal solution of problem (13)
in the following form

a = [0, · · · , 0, ak, ak+1]
>,b = [0, 0, · · · , 0, 1, 0]>, (14)

with a2k + a2k+1 = η2.

Proof. Due to space limitation, we omit the proof details.

Since ‖a‖22 = η2 and a is in the form of (14), we can
write a = η[0, 0, · · · , cos(α), sin(α)]>, where α ∈ [0, 2π).
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To compute the k leading principal components of Y, we can
perform the eigenvalue decomposition of YY>,

YY> =

[
Λ2
k−1 0
0 cc>

]
, (15)

where c = [σk+η cosα, η sin(α)]
>, Λk−1 = diag(σ1, σ2, · · · , σk−1).

Suppose the compact SVD of YY> is YY> = ÛΣ̂V̂>,
where

Û =

[
Ik−1 0

0 z

]
, (16)

and z ∈ R2 is the eigenvector of cc> corresponding to its
nonzero eigenvalue. Since one set of orthonormal bases of
span(Σ̃) is [Ik,0]

>, the Asimov distance is determined by
the singular values of[

Ik
0

]>
·
[
Ik−1 0

0 z

]
=

[
Ik−1 0

0 z1

]
.

So, the Asimov distance is arccos(|z1|). Since c is the eigen-
vector of cc> corresponding to its nonzero eigenvalue, then
|z1| = |c1|

‖c‖ . Our objective function reduces to

min
α∈[0,2π)

:
|σk + η cos(α)|

‖[σk + η cos(α), η sin(α)]‖2
.

For this problem, we can show that the optimal α is α =
arccos (−η/σk) or 2π− arccos(−η/σk). Hence, the optimal
solution of problem (13) is

a =

[
0, 0, · · · ,−η2/σk,±η

√
1− η2/σ2

k

]>
, (17)

b = [0, 0, · · · , 0, 1, 0]>, (18)

which indicates the optimal solution of problem (12) is

a = −η2/σkuk ± η
√
1− η2/σ2

kuq,b = vk, (19)

where uq is any vector orthogonal to the column space of
X. The corresponding optimal subspace distance is θ∗ =
arcsin(η/σk). In summary, the optimal Asimov distance in
the low-rank case is:

θ∗ =

{
π/2, if η > σk

arcsin (η/σk), if η ≤ σk
, (20)

which is similar to the full column rank case. In conclusion,
the optimal subspace distance only depends on the smallest
singular value and the adversary’s energy budget in both full
column rank and low-rank cases.

4. NUMERICAL EXAMPLE

In this section, we provide a numerical example to illustrate
the results obtained in this paper. In our simulation, we set

0 0.5 1

η/σk

0

π/4

π/2

θ
∗

Proposed

adPCA

Random-max

Random-min

Random-mean

Fig. 1. Subspace distance with different attack strategies un-
der different energy ratios.

d = 5, n = 5, and k = 3. We generate the original data
as X = AB>, where A ∈ Rd×k,B ∈ Rn×k and each en-
try of A,B is i.i.d. generated according to the standard nor-
mal distribution. First, we use our optimal attack strategy to
design a,b and add the attack matrix ∆X = ab> to the
original data matrix X. We then perform SVD on X̂ and se-
lect the k leading principal components. Finally, we compute
the distance between the selected subspace and the original
subspace. In the simulation, we also compare the strategy
described in [12], which adds one adversarial data sample
into the data set. We denote this strategy as adPCA. In ad-
dition, we also conduct a test using a random attack strategy,
in which we randomly generate a,b with each entry of a,b
being i.i.d. generated according to the standard normal distri-
bution. Then we normalize the energy of ab>to be η2. For
each η, we repeatedly generate 100000 pairs of a and b. For
each pair of a and b, we compute its corresponding Asimov
distance.

Fig.1 illustrates the Asimov distances computed by these
three different strategies. In this figure, the x axis is the ratio
between η and the smallest singular value of X. For the ran-
dom strategy, we plot the mean, maximal, and minimal sub-
space distance for each η/σk. From the figure, we can see that
our strategy is better than adPCA. This is due to the fact that
our method can modify all the data samples, while adPCA can
only add one adversarial data sample into the data set. Hence,
our strategy has more degrees of freedom to manipulate the
data samples. From the figure, we can see that our optimal at-
tack strategy can achieve a significant larger Asimov distance
than that can be achieved by the random attack strategy.

5. CONCLUSION

In this paper, we have investigated the adversarial robustness
of PCA problem. We have characterized the optimal rank-one
adversarial modification strategy for the attacker to modify
the data. The strategy only depends on the smallest singular
value of the original data matrix and the adversary’s energy
budget. In the future, it is of interest to investigate the defense
strategy to mitigate the effects of this attack.
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