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ABSTRACT
We propose a neural network-based framework for learning local
representations of multivariate time series, and demonstrate its ef-
fectiveness for online signature verification. In contrast to related
works that optimize a global distance objective, we incorporate a
Siamese network into dynamic time warping (DTW), leading to a
novel prewarping Siamese network (PSN) optimized with a local
embedding loss. PSN learns a feature space that preserves the tem-
poral location-wise distances of local structures. Local embedding,
along with the alignment conditions of DTW, imposes a temporal
consistency constraint on the sequence-level distance measure while
achieving invariance as regards non-linear distortions. Validation on
online signature verification datasets demonstrates the advantage of
our framework over existing techniques that use either handcrafted
or learned feature representations.

Index Terms — Biometrics, DTW, feature learning, online sig-
nature verification, Siamese network

1. INTRODUCTION

Biometrics is deployed widely in a multitude of applications, e.g.,
security, e-government, health care, education, banking, and insur-
ance [1]. Among the wide range of biometric traits, handwritten sig-
natures have long been established as the most widespread means of
personal verification [2]. In this paper, we focus on online signature
verification, where the signature is represented as a multivariate time
series sampled with an online acquisition device during the writing
process. The task is to evaluate the authenticity of a test signature by
matching it against a few reference specimens enrolled in a database.
It remains challenging because of large intra-personal variability and
subtle differences between genuine and forged signatures. One of the
most critical aspects of this task is signature matching, i.e., how to
define a discriminative distance measure between two time series.

Dynamic time warping (DTW) [3] has been extensively used for
this purpose [4–12]. It calculates an optimal match between two time
series, which has the minimal cost computed as the sum of the dis-
tances, for each matched pair of temporal locations, between their
local features. Defining a distance with this minimal cost, DTW
achieves invariance to non-linear distortions and also imposes a tem-
poral consistency constraint on verification. Meanwhile, intensive
research has been devoted to HMMs [12–16], which have been found
to be well suited for signature modeling since they are highly adapt-
able to personal variability. In earlier work [17], a Siamese network
was used to learn a distance metric from data, driving the distance to
be small for pairs of genuine signatures from the same subject and
longer for a pair consisting of a genuine and a forged signature. Most
of such Siamese networks [17–21] produce a global representation
for the time series by flattening [17], average pooling [20], or using
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(a) DTW
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(b) Proposed method

Fig. 1. Incorporating Siamese network into dynamic time warping.

fully connected layers [19, 21] on hidden unit activations. However,
the loss of temporal information makes such a global representation
incompatible with temporal consistency-aware models as involved
in DTW.

In this paper, we make it a goal to learn neural network-based
local representations for online signature verification. The learned
network should be able to impose a temporal consistency constraint
on the distance measure between two time series while achieving
invariance when encountering non-linear distortions, e.g., tempo-
ral translations and scaling. To this end, we revisit DTW and de-
compose it into warping and distance computation processing steps.
A Siamese network is then incorporated between the two steps as
shown in Fig. 1, leading to a novel prewarping Siamese network
(PSN). A PSN inherits the temporal invariance from DTW and so
is highly adaptable to intra-personal variability (robustness). Unlike
related work producing global representations [17–21], PSN accu-
rately learns a metric space that captures temporal location-wise dis-
tances of local structures. These two properties together impose a
temporal consistency constraint on the verification: two temporally
aligned time series are determined as a matching pair only if their
local representations at the same location are sufficiently similar to
each other (discriminative power).
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2. PROPOSED METHOD

Let X denote a test signature. Let {Y1, . . . ,Yn} be a set of n ref-
erence specimens that are enrolled in a database corresponding to a
claimed identity. The task is to evaluate the authenticity of X by
matching it against {Y1, . . . ,Yn}. Given a distance measure d(·, ·)
between two time series, we define the dissimilarity between X and
the specimens using Eq. 1. The final decision on signature authentic-
ity can then be achieved with a subject-independent threshold classi-
fier. The dissimilarity can also be normalized as in Eq. 2 by the mean
value of all the pairwise distances within {Y1, . . . ,Yn} for greater
robustness as regards inter-device and interpersonal variability. The
problem is how to define and learn the distance measure d(·, ·).

D(X , {Y1, . . . ,Yn}) =

n∑
i=1

d(X ,Yi) (1)

D(X , {Y1, . . . ,Yn}) =

∑n
i=1 d(X ,Yi)∑n

i=1

∑n
j>i d(Yi,Yj) (2)

2.1. Dynamic Time Warping

We first revisit the DTW algorithm. Let X = [X1 . . .XN ]> where
Xi is a column vector of raw, handcrafted local features at temporal
location i in X . The warping path Π between two time series X and
Y of lengths N and M , respectively, is a pair of increasing integral
vectors (π1, π2) of lengthL < N+M such that 1 = π1(1) ≤ · · · ≤
π1(L) = N and 1 = π2(1) ≤ · · · ≤ π2(L) = M (monotonicity),
with unitary increments (continuity). In its typical form, the optimal
warping path Π̂ is defined as

Π̂ = arg min
Π

L∑
i=1

‖Xπ1(i) − Yπ2(i)‖. (3)

With a Π̂ of length L̂, X and Y can be aligned in time, i.e., trans-
formed to two warped feature sequences X̂ and Ŷ of the same length
L̂ such that

X̂ = [Xπ̂1(1) . . .Xπ̂1(L̂)]
>, Ŷ = [Yπ̂2(1) . . .Yπ̂2(L̂)]

>. (4)

In online signature verification based on DTW, the minimal cost in
Eq. 3 defines the distance measure d(X ,Y). It actually equals the
sum of location-wise distances between X̂ and Ŷ as in Eq. 5, where
X̂i and Ŷi are local feature vectors at location i.

d(X ,Y) =

L̂∑
i=1

‖X̂i − Ŷi‖ (5)

From this viewpoint, we decompose DTW into two processing steps:
1) finding the optimal warping path Π̂ and transforming X and Y to
X̂ and Ŷ as in Eqs. 3 and 4; 2) computing the sum of the location-
wise distances as in Eq. 5. These two steps are shown as two blocks
in Fig. 1a.

2.2. Prewarping Siamese Network

To allow feature learning, we propose incorporating a Siamese net-
work between the two processing steps of DTW as in Fig. 1b. This
network takes warped feature sequences X̂ and Ŷ as inputs and pro-
duces two sequences of hidden unit activations as outputs. These
activations should have a natural interpretation as features of local
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Fig. 2. Prewarping Siamese network.

signature segments, rather than global representations, correspond-
ing to the receptive fields of each feature vector. Typical examples
of such a network include fully convolutional networks and bidirec-
tional RNNs. Let X and Y of the same length W denote the feature
sequences output from the Siamese network. We replace Eq. 5 with
an alternative distance defined by using the location-wise distances
between X and Y as in Eq. 6, where xi and yi are feature vectors
at location i.

d(X ,Y) =
1

W

W∑
i=1

‖xi − yi‖ (6)

In this way, DTW makes Eq. 6 invariant to temporal distortions,
and improves the accuracy of the local correspondences xi and yi.
Meanwhile, Eq. 6, together with the monotonicity and continuity
conditions described in Section 2.1, imposes a temporal consistency
constraint on the distance measure: two temporally aligned time se-
ries are determined as matching only if their local segments at the
same location are similar to each other. Our method thus avoids the
loss of temporal information compared with existing Siamese net-
works that learn global signature representations.

Figure 2 shows the PSN architecture in detail. Given an input
signature, its pen coordinates are used to extract 7 of 27 time func-
tions at each temporal location [16], resulting in a sequence of 7D
local features. After channel-wise standardization, the standardized
sequences of two inputs are warped and aligned in time with DTW.

To enable PSN to work on mini-batches, the warped feature se-
quences are resized to a predefined length (1,024 in this paper) fol-
lowed by another standardization. The sub-networks of PSN can be
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any neural network as long as its hidden unit activations can be inter-
preted as a sequence of local features with sufficiently high temporal
resolution. In this paper, we use a fully convolutional network as the
sub-network because of its advantages in terms of parallelism and
stable gradient computation over RNNs. The input sequence of this
network can be understood as a 7-channel “image” of size 1×1024,
the width of which actually corresponds to the temporal length. This
one-dimensional CNN contains one 1×7 convolution, one max pool-
ing, and two 1×3 convolution layers. The batch normalization [22]
is used right after each convolution. The last ReLU layer is followed
by location-wise l2-normalization. The feature sequences X and Y
output from the sub-networks of PSN are thus two 1×W×K tensors
or two W×K matrices, where W = 256 is the temporal length and
K = 64 the number of dimensions.

A PSN is trained by minimizing the local embedding loss as in
Section 2.3. During testing, the distance between two signatures is
computed by Eq. 6 and substituted into Eq. 1 or 2 for verification.

2.3. Local Embedding Loss

Learning the distance between two corresponding time series causes
their temporal structures to be mapped to two neighboring points in
a learned feature space. In a typical Siamese network [20, 23], this
is usually done with a pooling operation, e.g., average pooling, on
the activations of the last layer to obtain a global representation. The
Siamese network is trained by minimizing a contrastive loss [24].
Let x̄ = [x̄1 . . . x̄K ]> be a global representation constructed with
average pooling, where x̄j = 1

W

∑W
i=1 xij . Here, xij is the activa-

tion at location i and dimension j in X ∈ RW×K . Let z ∈ {0, 1}
declaring whether a pair is non-matching or matching, respectively.
The global contrastive loss and its derivative can be defined by Eqs. 7
and 8 with τ being the margin of the hinge loss.

L =

{
1
2
‖x̄− ȳ‖2 if z = 1

1
2
[max(0, τ − ‖x̄− ȳ‖)]2 otherwise

(7)

∂L
∂xij

=

{
x̄j−ȳj
W

if z = 1

− x̄j−ȳj
W
· max(0,τ−‖x̄−ȳ‖)

‖x̄−ȳ‖ otherwise
(8)

However, this global loss usually leads to the disappearance of tem-
poral information. From Eq. 8, we can see that the gradient at the
activation xij only relies on x̄j − ȳj and ‖x̄− ȳ‖, which are totally
independent of the location i. That is, all xij at dimension j receive
the same updates at each training iteration. In this paper, we propose
a generalization of the contrastive loss, called local embedding loss,
to learn local representations from corresponding local segments, in-
stead of the whole time series, of two signatures.
Location-wise local embedding loss. One method of achieving this
purpose is to define a contrastive loss for each temporal location and
then to aggregate the losses from all locations. Recall that xi ∈ X
and yi ∈ Y are feature vectors at location i with i ∈ {1, . . . ,W},
and that xij ∈ xi is the activation at location i and dimension j. Our
location-wise local embedding loss and its derivative with respect to
xij can thus be defined by Eqs. 9 and 10.

L =

{
1

2W

∑W
i=1 ‖xi − yi‖2 if z = 1

1
2W

∑W
i=1[max(0, τ − ‖xi − yi‖)]2 otherwise

(9)

∂L
∂xij

=

{
xij−yij
W

if z = 1

−xij−yij
W

· max(0,τ−‖xi−yi‖)
‖xi−yi‖

otherwise
(10)

Compared with Eq. 8, the gradient in Eq. 10 relies on xij − yij and
‖xi−yi‖, both being dependent on the location i. For non-matching

pairs, the activations at location i that have a smaller location-wise
distance ‖xi−yi‖ receive larger parameter updates during the train-
ing process.
Sequence-wise local embedding loss. From another viewpoint, we
can also define the contrastive loss directly by using the sequence-
level distance measure d(X ,Y) in Eq. 6, instead of defining a con-
trastive loss for each temporal location. Recall that d(X ,Y) is the
average of the location-wise l2 distances between each pair of xi and
yi. In consequence, our sequence-wise local embedding loss and its
derivative can be defined by Eqs. 11 and 12.

L =

{
1
2
[d(X ,Y)]2 if z = 1

1
2
{max[0, τ − d(X ,Y)]}2 otherwise

(11)

∂L
∂xij

=

{
xij−yij
W

· d(X ,Y)
‖xi−yi‖

if z = 1

−xij−yij
W

· max[0,τ−d(X ,Y)]
‖xi−yi‖

otherwise
(12)

Similar to Eq. 10, the gradient in Eq. 12 is location-adaptive. The dif-
ference between the two local embedding losses lies in their depen-
dence on d(X ,Y). Parameter updates are dampened for matching
pairs if they already have a small d(X ,Y). On the other hand, non-
matching pairs contribute to the loss function only if their d(X ,Y)
is within a radius defined by the margin τ .

3. EXPERIMENTS

3.1. Datasets

In this paper, we considered the most common type of verification:
deciding whether a test signature is a genuine signature or a skilled
forgery in relation to a claimed identity. Here, a skilled forgery indi-
cates a signature imitated by a forger. We focused on four signature
datasets: MCYT-100 [25], BiosecurID SONOF [26], and SUSIG vi-
sual and blind sub-corpuses [6]. These four datasets vary widely as
regards acquisition protocol, geographical location, and registering
device. MCYT-100 is the largest of the four datasets and contains
100 subjects, each having 25 genuine signatures and 25 skilled forg-
eries. Considering the limited amount of available training data, we
validated our method under the following two experimental proto-
cols based on the four datasets.
MCYT-100 (90/80/70%). The first 90/80/70% of subjects in MCYT
were used for training, and the remaining subjects for testing.
FULL. We combined all the four datasets: the first 90% of subjects
in each dataset were extracted and combined for training; all the re-
maining subjects were left for testing. The training set contains 375
subjects and 11,944 signatures; the testing set contains 41 subjects
and 1,312 signatures. This protocol has a larger amount of training
data, but is challenging because of the large inter-device variability.

For each subject in the testing set, the first five genuine signa-
tures were used as reference signatures. The remaining genuine sig-
natures and all the skilled forgeries were used as test signatures. The
dissimilarity between each test signature and the set of reference sig-
natures was computed with Eq. 1 or 2. The dissimilarities computed
for all the subjects were combined into a ranking list. An equal error
rate (EER) was then obtained as the evaluation metric.

3.2. Baselines

We compared our PSN with four baselines, all with the same config-
uration unless stated otherwise.
DTW. DTW was applied to the 7 of 27 time functions [16] described
in Section 2.2.
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Table 1. EER (%) comparison for verification of genuine signatures and skilled forgeries. PW and LE denote prewarping and local embedding,
respectively. Our method is marked with ?. The best performance is highlighted in bold.

Method PW LE MCYT (90%) MCYT (80%) MCYT (70%) FULL

DTW – – 4.00 3.00 4.17 2.88

SN 7 7 5.50 6.80 6.27 6.72
SN w/ prewarping 3 7 6.00 7.00 8.00 6.33
SN w/ location-wise local embedding loss 7 3 3.50 3.40 3.75 4.22

? PSN w/ location-wise local embedding loss 3 3 0.50 2.50 2.40 2.11
? PSN w/ sequence-wise local embedding loss 3 3 0.50 1.75 2.80 2.90

SN. A Siamese network (SN) was trained with a global contrastive
loss (Eq. 7) and has almost the same architecture as PSN in Fig. 2. It
has no DTW layer. Its last ReLU is followed by average pooling and
l2-normalization. The final output is a 64D global feature vector.
SN w/ prewarping. The network is basically the same as an SN, but
has a DTW layer as in Fig. 2.
SN w/ location-wise local embedding loss. The network is the same
as an SN, but was trained with a local embedding loss (Eq. 9).

3.3. Implementation Details

All the compared networks were initialized with He’s method [27]
and trained for 50 epochs. Each mini-batch consisted of 37 (12 pos
& 25 neg) pairs for MCYT-100 and 32 (12 pos & 20 neg) pairs for
FULL. Adam [28] was used with an initial learning rate l0 and an
exponential decay l0e−0.1i over each epoch i. The momentum and
the weight decay were set at 0.9 and 0.0005, respectively. The initial
learning rate l0 and the margin τ were tuned for each method and
for each dataset.

During testing, DTW used Eq. 2 as the verifier to handle inter-
personal variability in signature length. For all the neural networks,
Eq. 1 was used for MCYT-100, while Eq. 2 was used for FULL to
handle inter-device variability. The EERs of all the compared meth-
ods were obtained by using only the testing set even for DTW.

3.4. Results for Online Signature Verification

Table 1 summarizes the performance of our PSN and the baselines.
In general, our method outperformed all the baselines for all the
datasets, except for FULL, where the PSN with the sequence-wise
loss had a marginally lower EER than DTW. This may be because
both the training and the testing data in FULL have very complicated
distributions as they contain signatures obtained with four different
acquisition protocols. Since the proposed method is learning-based,
its performance depends heavily on the quality of the training data,
and so suffers more from imbalanced data distributions.

SN underperformed DTW for all the datasets, indicating the in-
adequacy of the global embedding loss for learning representations
of online signatures. As seen from the results of SN w/ prewarping,
adding a DTW layer did not improve the SN performance because
prewarping has no role in relation to avoiding the loss of temporal in-
formation during global pooling. In comparison, replacing the global
embedding loss from SN with the location-wise loss yet clearly re-
duced the EER. Incorporating both prewarping and local embedding
into the SN further improved the accuracy because it enabled the SN
to be trained with more accurate local correspondences.

It is difficult to reach a categorical decision based on Table 1 as
to whether the location-wise loss or the sequence-wise loss is better.

Table 2. EERs (%) published on MCYT. #sub and #ref are the num-
ber of subjects and the number of reference signatures, respectively.
Our EERs were obtained with location-wise local embedding loss.

Method #sub #ref EER

Fiérrez-Aguilar et al. [13] 145 10 3.36
Argones-Rúa & Alba-Castro [15] 100 10 2.85
Tang et al. [29] 100 10 2.25

Yanikoglu & Kholmatov [7] 100 5 7.80
Vivaracho-Pascual et al. [30] 280 5 6.60
Faúndez-Zanuy [5] 280 5 5.42
Nanni & Lumini [31] 100 5 5.20
Cpalka et al. [32] 100 5 4.88
Sae-Bae & Memon [33] 100 5 4.02
Tang et al. [29] 100 5 3.16

? PSN
30 5 2.40
20 5 2.50
10 5 0.50

The location-wise loss performed relatively more consistently. The
sequence-wise loss seemed to make our PSN suffer more from inter-
device variability. We shall compare them more carefully with more
experimental data in the future.

Table 2 summarizes the PSN results together with state-of-the-
art EERs previously reported for MCYT. It should be noted that our
method is learning-based and so our superior performance was ob-
tained using only the testing set, which contains many fewer sub-
jects. In consequence, the comparison is biased toward our method
relative to the state of the art. In the future, we shall consider training
the network with a larger, potentially synthetic, dataset and testing it
on the whole of each public dataset.

4. CONCLUSION

We proposed incorporating an SN into DTW to learn local represen-
tations for online signature verification. Compared with a conven-
tional SN, the proposed PSN is invariant when faced with tempo-
ral distortions and simultaneously imposes a temporal consistency
constraint on verification. The experimental results showed that the
temporal invariance was not compatible with global embedding but
clearly reduced the error rate in combination with a local embedding
loss. Meanwhile, the temporal consistency constraint consistently
improved the accuracy whether temporal invariance is considered or
not. In the future, we shall make use of larger datasets in combina-
tion with the PSN proposed in this paper.
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