
CROSS-VIEW IDENTICAL PART AREA ALIGNMENT FOR PERSON RE-IDENTIFICATION

Dongshu Xu1,2,3, Jun Chen1,2,3,† , Chao Liang1,2,3, Zheng Wang4, Ruimin Hu1,2,3

1National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University, China
2Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, China

3Collaborative Innovation Center of Geospatial Technology, China
4National Institute of Informatics, Japan

ABSTRACT

Person re-identification aims to associate images captured by
non-overlapping cameras. It is a challenging task because
images are often in different conditions such as background
clutter, illumination variation, viewpoint changes and differ-
ent camera settings. Viewpoint changes and pose variations
often cause body part self-occlusion and misalignment. To
deal with the problem, local features from human body parts
are extracted. However, with viewpoint changes, the body
parts also rotate horizontally. It is inappropriate to extract fea-
ture from entire area of body parts directly because the visible
surface of body parts would turn away if viewpoint changes.
Comparing identical areas provides a new way to pay atten-
tion to the details of person images. In this paper, we propose
a Rotation Invariant Network to find the identical areas in
cross-view images to extract robust local features. Extensive
experiment show the effectiveness of our method on public
datasets including CUHK03, Market1501 and DukeMTMC.

Index Terms— Person re-identification, rotation invari-
ant network, identical area comparison

1. INTRODUCTION

Person re-identification [1] aims to recognize the same person
in non-overlapping cameras. Given a query image containing
a person-of-interest and a set of gallary images, it is expected
to rank images in the gallary set with visual similarity [2].
In recent years, person re-identification has many important
applications in security and video surveilance. For example,
search missing persons in shopping center, retrieval suspect
in large amount of surveilance videos [3], etc.
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Fig. 1. The left images are in one camera, and the right images
are in another camera. Our network generates identical part
areas of person images in two different cameras while ROIs
include entire part area and part background.

Many research works have been proposed to improve per-
formance on public datasets [4][5][6]. However, identifying
the same person across different camera views is still a chal-
lenging task [7]. Pedestrian images captured by two different
cameras often suffer from pose variations which cause a huge
intra-class variation in learned visual representation.

Viewpoint changes and pose variations cause body part
self-occlusion and misalignment. Previous works utilized
horizontal stripes to cope with viewpoint changes in a statis-
tical manner but hard to cope with pose variation. Due to the
progress in human pose estimation [9] [10], recent works uti-
lized pose estimation results to align body parts. Specifically,
Zheng et al. [11] utilized a pose estimation model to obtain
keypoints of persons, fixed them by affinity transformation
and then compared body part. This method solved the part
misalignment problem well but ignoring the occlusion prob-
lem of body parts. Zhao et al. [12] used a region proposal
network, trained on an auxiliary pose dataset, to detect body
parts. The methods above extract local features from whole
blocks or body parts, where self-occlusion caused by view-
point changes often leads to information loss. For example
in Fig. 1, ROI based method extracts features from entire
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Fig. 2. The framework of Rotation Invariant Network (RIN). The upper part is Pose-guided Part Generation Network (PPGN)
which generates keypoints and part heatmaps. The lower part is Identical Area Comparison Network which computes distances
by part features generated by AFC [8] and identical areas pairwise. The right part illustrates the heatmaps generated by PPGN.

part areas. In the first row in Fig. 1, ROI in the left image
contains the right body part with a backpack which is oc-
cluded in the right image. In the second row in Fig. 1, ROI in
the right image include left leg which is occluded in the left
image. Hence, directly extracting features from entire area of
body parts including upper body and lower body that often
varies with viewpoint changes can deteriorate the matching
accuracy. To deal with these problems, finding identical part
areas of both stable and dicriminative is important, so that
part features can be extracted in same conditions, to alleviate
cross-view changes.

In contrast to the works above, we propose to employ key-
points to obtain identical human part areas rather than the en-
tire areas. We argue that comparing identical part areas is
naturally more suitable to cope with person re-identification
challenges because the clothes are not all in same color or
same texture.

In this work, we propose a novel combination network
to compare identical part areas in different views. At first,
we use a two-stage hourglass based network to acquire per-
son keypoints and part heatmaps. Then we utilize an iden-
tical area generation model to obtain intersection area pair-
wise from the person keypoints and part heatmaps. Finally,
we extract features from other parts and identical part areas.
Experimental results show effectiveness of the identical area
generation mechanism.

2. METHODOLOGY

The framework of Rotation Invariant Network (RIN) is illus-
trated in Fig. 2. RIN consists of two main parts: 1) Pose-
guided Part Generation Network (PPGN) and Rotation Invari-
ant Distance Measure (RIDM). The proposed PPGN module
aims at generating keypoints by a base network (Hourglass [9]

used in this work) and body part masks in two steps. Given
a batch of images, PPGN first generates coarse heatmaps of
keypoints and body parts, and then refines them. The RIDM
obtains keypoints and weighted part masks from PPGN and
feature maps from a pretrained re-id base network (Resnet50
[13] fine tuned on re-id datasets). Keypoints can be utilized
to generate intersection masks in upper body and lower body
which contains most discriminative information. Then AFC
[8], a part feature extraction structure, combines weighted
part masks and feature maps to acquire part features. The
intersection mask and feature maps compose the pairwise in-
tersection features. Finally, a triplet-loss [14] is utilized to
learn robust features.

2.1. Rotation Invariant Network

Inspired by [9], we utilize two hourglass blocks to construct
PPGN by a balance on amount of parameters and prediction
accuracy. We take the original hourglass network as a base
network, then link a convolutional layer to increase reception
field and channels to acquire sufficient part information that
part heatmaps demand. After that, we repeat the hourglass
structure to make the network stable. When PPGN is fine-
tuned in joint network, modules of first hourglass can be fixed
so that the second hourglass can learn to generate weighted
part heatmap. The labels of part heatmaps are the same as the
form of [8].

The PPGN is trained in two steps. In stage 1, we change
the kernel in the last convolutional layer from 1 × 1 to 3 ×
3, double the channels and change the output to keypoints.
In stage 2, we repeat the structure of stage 1 and change the
kernel in input convolutional layer from 1 × 1 to 3 × 3, and
fix the parameters in stage 1. The output of stage i is keypoint
heatmaps Ki and part heatmaps P i. The ground truths of
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them are K∗ and P ∗. The loss of PPGN is:

LG = LK +wLP =
∑
s=1,2

‖Ks −K∗‖+w‖P s −P ∗‖ (1)

Based on the selection of identical part area, we utilize
AFC [8] to generate part feature so as to combine with our
pairwise area distance. In this part, we utilize Resnet50 [13]
as the base network to generate feature maps from layer2.
Then the feature maps have two ways. One is sent to AFC
network to combine with the part masks to generate part fea-
tures f . The other is combined with the intersection masks to
generate pairwise distances DI which is interpreted in Sec-
tion 2.2. Then we combine pairwise distance of part features
Df and the intersection distance to get the final distance D.

D = Df + λDI (2)

Finally, we use triplet-loss [14] as the re-id loss to train
the whole network according to the distance matrix D.

LReid =

N∑
i

[D2
Pi
−D2

Ni
+ α]+ (3)

where DPi
is the distance of a positive pair and DNi

is the
distance of a negative pair.

2.2. Identical area comparison

Viewpoint changes would cause self-occlusion and local area
misalignment due to the horizontal rotation of main body
parts. It is inapproprate to compare whole body parts directly.
We need to find identical areas in different views.

Due to invariance of keypoints in viewpoint changes, we
use keypoints [9] which are shown in Fig. 3 to generate iden-
tical part areas of the same person in diferent views. Assume
that cameras are far away from persons. Given images in cam-
era C1 and C2, the right image in Fig. 3 shows an illustration
of identical area. The ellipse is the transverse plane of up-
per body. P1 and P2 are keypoints of left shoulder, which
can be viewed as any points in the ecllipse due to viewpoint
variations. Define that the parameter equation of the ellipse
is:

x2

a2
+
y2

b2
= 1 (4)

where a equals a half of upper body height and b is related to
waistline and bust which is initialized with a third of a.

The P1 and P2 have the coordinates (acosθ1, bsinθ1)
and (acosθ2, bsinθ2) seperately. So tangent lines L2R2 and
R1R2 can be represented as:

xcosθ1
a

+
ysinθ1
b

= 1 (5)

xcosθ2
a

+
ysinθ2
b

= 1 (6)

R1

P2

P1

R2
C1

C2

L1

L2
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Fig. 3. Illustration of keypoints (yellow point) and the inter-
section area (red line). Utilize the view of transverse plane to
deal with horizontal rotation problem.

Combine the two equations above, we can get the hori-
zontal ordinate of the intersection point R2:

a(sinθ2 − sinθ1)
sin(θ2 − θ1)

(7)

Similarly, the horizontal ordinate of the intersection point
L2 is formed as:

−a(sinθ1 + sinθ2)

sin(θ2 − θ1)
(8)

So the scale factor β of the intersection area is:

β =
|L2T1|
|L2L1|

=
sinθ2 − sinθ1 − cosθ2sin(θ2 − θ1)

2sinθ2
(9)

The distance between two shoulder keypoints in an image
is equal to the distance of two parallel tangent lines.

di =
2√

cos2θi
a2 + sin2θi

b2

(10)

The locations of keypoints determine which quadrant the
θi in as well as the signs of cosθi and sinθi. If the vertical
ordinate of left shoulder keypoint is higher than that of right
shoulder, θi is in the first or second quadrant. If the width of
left shoulder is higher than that of right shoulder, θi is in the
second or third quadrant.

Then we can compute identical area direction by vectors.
−−−→
T1P2 = (2acosθ1, 2bsinθ1) (11)
−−−→
T2P1 = (2acosθ2, 2bsinθ2) (12)

The clockwise vertical vector to
−−−→
T1P2 is:

−→n = (bsinθ1,−acosθ1) (13)

If −→n •
−−−→
T2P1 > 0, the scale is β and direction is the same

as−→n else 1−β and the opposite direction. So the heatmap of
identical area can be obtained by part heatmap and the mask
which is a vertical stripe, based on the aforementioned scale,
direction and keypoint coordinates.

Finally, the pairwise distance DI is calculated by shortest
path distance [15] of identical area heatmaps.
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Table 1. Comparison results on CUHK03(labeled).
CUHK03 (labeled) R-1 R-5 R-10 R-20

SVDNet [19] 81.80 - - -
PAR [20] 85.40 97.60 99.40 99.90

Spindle [12] 88.50 97.80 98.60 99.20
PDC [21] 88.70 98.61 99.24 99.67
AACN [8] 91.39 98.89 99.48 99.75

Ours 88.73 98.76 99.56 99.67

Table 2. Comparison results on Market1501.
Market1501 R-1 mAP
SVDNet [19] 82.30 62.10

PAR [20] 81.00 63.40
Spindle [12] 76.90 -

PDC [21] 84.14 63.41
AACN [8] 85.90 66.87

Ours 86.10 67.60

3. EXPERIMENTS

3.1. Datasets and Protocols

Our proposed RIN framework is evaluated on several pub-
lic person ReID datasets namely Market1501 [1], CUHK03
[16] and DukeMTMC-reID [17]. In the standard evaluation
protocol of Market1501 [1], the training set consists of 751
identities with a total of 12936 images while the test set con-
sists of 750 identities containing 19734 gallery images and
3368 query images. In DukeMTMC-reID [17], the training
set contains 702 identities with 16522 images while the test
set consists of 702 identities containing 16522 gallery images
and 2228 query images. The CUHK03 [16] consists of 13164
images with a total 1467 identities captured by 6 cameras. In
the standard protocol, the training set contains 1160 identities
while the test set contains 100 identities.

We evaluate the quality of our model using Cumulative
Matching Characteristic (CMC) curves and mean average
precision (mAP). All the experiments are performed in single
query setting.

3.2. Implementation Details

The input images of our model is 256×256 pixels. PPGN net-
work is trained on MPII [18] with over 25k images contain-
ing over 40k people with annotated body joints. Meanwhile
a pretrained Resnet50 network is fine tuned on re-id datasets.
Then we fix both network parameters, add other layers and
train them. Finally, all modules are jointly fine-tuned.

3.3. Person re-identification performance

The proposed RIN is compared with recent approaches.
These approaches are categorized into two sets: pose ir-

Table 3. Comparison results on DukeMTMC-reID
DukeMTMC-reID R-1 mAP

OIM [22] 68.10 -
PAN [23] 71.59 51.51

SVDNet [19] 76.70 56.80
AACN [8] 76.84 59.25

Ours 77.20 56.9

Table 4. Effectiveness of identical area comparison
Rank-1 Market1501 DukeMTMC

RIN-w/o-i 85.1 73.87
RIN-i 86.10 77.20

relevant and pose based methods. One set is the Singular
Vector Decomposition method (SVDNet) [19], the Online
Instance Matching method (OIM) [22], the pedestrian align-
ment network (PAN) [23], the Part-Aligned Representation
(PAR) [20]. The other set utilized pose estimation network
as a part, which includes the Spindle Net (Spindle) [12], the
Pose-driven Deep Convolutional model (PDC) [21]. The ex-
periment results are presented in Table [1, 2, 3]. It shows
that our proposed RIN outperforms most approches on these
datasets but the performance is lower than AACN in sev-
eral datasets. It is mainly because the pose of these datasets
changes little and the clothes in these datasets are mostly in
simple color. Moreover, we measure the effectiveness of our
proposed identical part area comparison method in Table 4
and give some masks generated by PPGN network in Fig.4.

Image Mask Image Mask Image Mask Image Mask

Fig. 4. Illustration of some identical part areas our model
finds.

4. CONCLUSIONS

In this paper, we propose a Rotation Invariant Network (RIN)
to deal with the self-occlusion and misalignment caused by
human body horizontal rotation in person re-identification.
RIN is composed of two main components, the Pose-guided
Part Generation Network and Identical Area Comparison
Mechanism, where PPGN is to generate part heatmap from
coarse to fine and IACM is to compute the pairwise dis-
tance between cross-view intersection part areas. Extensive
experiments demonstrate that our method achieves good per-
formance on several public datasets.
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