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ABSTRACT
Due to the shared and open-access nature of the wire-
less medium, wireless networks are vulnerable to jam-
ming attacks. In this paper we study the problem of
resource assigning in a single carrier communication sys-
tem, where a user is communicating with a destination in
the presence of a jammer. The jammer’s channel to the
destination is assumed flat fading, and its gain is known
in probabilistic terms. In particular, the jammer’s chan-
nel gain could take any value out of a finite set, with
an a priori known probability. We model the problem
in a Bayesian jamming game framework with utility the
user throughput. We prove the existence and unique-
ness of Nash and Stackelberg equilibria, and derive the
equilibrium strategies in closed form. Our theoretical
results, also supported by simulations, suggest that the
Nash strategy is more sensitive to varying a priori prob-
abilities, as compared to the Stackelberg strategy.

Index Terms— Bayesian game, Jamming, Nash
equilibrium, Stackelberg equilibrium

1. INTRODUCTION

Due to the shared and open-access nature of the wireless
medium, wireless networks are vulnerable to malicious
attacks, such as jamming or spoofing. Due to the sever-
ity of the potential consequences of such threats, wireless
security has continued to receive considerable attention
by the research community. A comprehensive survey of
security threats and detection techniques in cognitive ra-
dio networks can be found in [1]. Since jamming prob-
lems involve multiple agents (users and adversaries), each
having their own objective, non-cooperative game the-
ory, and the powerful concepts of equilibrium strategies
are natural tools to study such problems [2]. One solu-
tion to the non-cooperative game is the Nash equilibrium,
according to which, none of the agents has a motiva-
tion to diverse from equilibrium strategy due to loss in
gain if all the other agents follow their own equilibrium
strategies. Examples of designing Nash equilibrium in
anti-jamming problems include [3–9]. Another solution

is the Stackelberg equilibrium, where one of the agents
is the leader and others are the followers, which impels
a hierarchical behavior among the agents. Examples of
designing Stackelberg equilibrium in anti-jamming prob-
lems include [10–13].

A key characteristic of wireless access networks is that
the agents (users and adversaries) might not have com-
plete information regarding the other agent’s identities,
traffic dynamic and channel characteristics and agent’s
location [14]. Uncertainty about the jammer’s location
was examined in [15], within an FDMA scheme and ap-
plying a matrix game. As the fading channel gains de-
pend on the distance between the jammer and the re-
ceiver, uncertainty on fading channel gains can also be
interpreted as uncertainty about the jammer’s location.
Such uncertainty on fading channel gains was also consid-
ered in [16–18]. In [16], non-hostile interference caused
by selfish user communication was considered in a single
carrier network. In [17], hostile interference caused by a
malicious user in low SINR OFDM communications was
considered. In [18], the jamming problem was investi-
gated in a single carrier transmission scheme, assuming
a flat fading channel and using the SINR as the user util-
ity. In particular, such SINR utility can approximately
linearize the throughput expression if the SINR is low
enough. Also, a hierarchical iteration between a user and
a jammer (i.e., a Stackelberg equilibrium framework) was
employed.

The most related paper to our contribution is [18],
but here we consider throughput as the user’s utility
instead of SINR employed as user’s utility in [18]. To
the best knowledge of the authors, this is the first work
where, under uncertainty on the jammer’s channel and
using throughput as user utility, the equilibrium strategy
is found in closed form for the Nash equilibrium frame-
work (i.e., without assuming a hierarchy on the rivals’ be-
havior) as well as for the Stackelberg equilibrium frame-
work (i.e., impelling hierarchy on the rivals’ behavior by
considering the user as a leader and the jammer as the
follower).

The organization of this paper is as follows: in Sec-
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Fig. 1. The user and the jammer.

tion 2, basic model is formulated within the Nash equilib-
rium scenario. Uniqueness of the equilibrium is proven as
well as equilibrium strategies are derived in closed form.
In Section 3, the model is modified and solved for the
Stackelberg scenario. Finally, in Section 4, conclusions
and discussions are offered.

2. NASH EQUILIBRIUM

Let us consider a single carrier transmission scheme with
two agents, namely, a user and an adversary. The ad-
versary is a jammer, who intends to degrade the user’s
communication by generating interference. We study the
resource allocation problem in the framework of game
theory. The resource for the user is its transmission
power P , with P ≥ 0, and for the adversary is its jam-
ming power J , with J ≥ 0. Let CP and CJ be the user
transmission cost per unit transmission power and the
jamming cost per unit jamming power, respectively. Let
σ2 and h be the background noise variance and gain of
the fading source-destination channel, respectively. All
channels are considered to be flat fading. The jam-
mer is assumed to have complete knowledge of h. The
user does not know the jammer’s exact location. The
user only knows that the jammer can be at distance di
from the receiver with a priori known probability qi, for
i = 1, . . . , n, and

∑n
i=1 qi = 1. Such knowledge could

have been obtained based on past observations of jam-
mer behavior. Equivalently, the user knows that the gain
of the jammer’s channel to the destination is gi = G/d2

i

(with G > 0 some constant) with probability qi [3] (see
Fig. 1). In the following, by jammer type-i we refer to a
jammer employing strategy Ji and having fading channel
gain gi.

Let J = (J1, . . . , Jn). The payoff for the user is taken
as the difference between expected throughput and the
transmission cost, i.e.,

vU (P,J) ,
n∑
i=1

qi ln
(

1 + hP

σ2 + giJi

)
− CPP.

Further, let us define the cost function of the type-i jam-
mer to be the sum of the user’s throughput and the jam-

ming cost, i.e.,

vJ,i(P, Ji) , ln
(

1 + hP

σ2 + giJi

)
+ CJ,iJi for i = 1, . . . , n.

The user wants to use power P that maximizes its pay-
off, vU (P,J), while each jammer type wants to minimize
its cost, vJ,i(P, Ji). Thus, we look for Nash equilibrium
(NE) strategies [2], which due to incomplete information
can also be interpreted as Bayesian equilibrium. In par-
ticular, we look for (P∗,J∗), such that for any (P,J) the
following inequalities hold:

vU (P,J∗) ≤ vU (P∗,J∗),
vJ,i(P∗, Ji) ≥ vJ,i(P∗, J∗i) for i = 1, . . . , n.

(1)

Let us denote by ΓNG the above described Nash game
(NG). By (1), (P,J) is a NE if and only if P is the
best response strategy to J = (J1, . . . , Jn), while Ji, for
each i, is the best response strategy to P , i.e., they are
solutions of the following best response equations:

P = BRU (J) , arg max
P≥0

vU (P,J), (2)

Ji = BRJ,i(P ) , arg min
Ji≥0

vJ,i(P, Ji), for i = 1, . . . , n. (3)

The following theorem provides the equilibrium strate-
gies in closed form.

Theorem 1 The game ΓNG has a unique NE (P,J). In
particular,

(a) If
1/σ2 ≤ CP /h (4)

then

P = 0 and J = 0. (5)

(b) If
1/σ2 − CJ/g ≤ CP /h < 1/σ2 (6)

with g , min gi then

P = 1/CP − σ2/h and J = 0 (7)

(c) If
CP /h < 1/σ2 − CJ/g (8)

then

Ji =


1
gi

(√(
hP
2
)2

+ gi
CJ

hP − hP
2 − σ

2

)
, i ∈ I(P ),

0, i 6∈ I(P ),
(9)

where

I(P ) =
{
i ∈ {1, . . . , n} : gi ≥ CJσ2(σ2/(hP ) + 1)

}
(10)
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and P is the unique positive root of equation

FU (P ) = CP , (11)

with

FU (P ) ,
∑
i∈I(P )

qi
h

hP/2 +
√

(hP/2)2 + gihP/CJ

+
∑
i 6∈I(P )

qi
h

σ2 + hP
.

(12)

Moreover, FU decreases from h/σ2 to 0 as P increases
from 0 to ∞. Thus, the unique positive root of (11) can
be found via the bisection method.
Finally, the best response strategy BRJ,i(P ) of the type-i
jammer is given by (9).

Thus, (4) yields non-active user’s strategy P = 0. The
set I(P ) defines the types of jammers such that Ji > 0,
i.e., active jammer types.

The following corollary establishes the condition for
the set I(P ) to be empty, i.e., the condition which guar-
antees the absence of hostile interference.
Corollary 1 (a) The set of active jammer types, I(P ),
is empty for any P ≥ 0 if and only if:

g ≤ CJσ2. (13)

(b) If (13) holds, then J = 0 and P = max{1/CP −
σ2/h, 0}.

3. STACKELBERG EQUILIBRIUM

In this section we consider a hierarchical relation between
the user and the jammer, namely, the user is the leader
and the jammer is the follower. Such scenario is formu-
lated as a two-level optimization problem, with the user
(top-level) to the jammer (low-level). The problem can
be solved by backward induction, and the solution is re-
ferred to as the Stackelberg equilibrium (SE), while the
game is called Stackelberg game (SG) [2]. In the first
step of this game, for a fixed P , determined by the user,
the jammer of each type tries to minimize its cost func-
tion. Thus, per Theorem 1, the type-i jammer intends
to apply strategy BRJ,i(P ), which is given in closed form
by (9). In the second step of the two-level game, the user
selects the optimal P to get a maximal payoff, i.e., to
solve the following optimization problem:

max
P≥0

Ψ(P ), with Ψ(P ) , vU (P, (BRJ,1(P ), . . . ,BRJ,n(P ))) .

(14)
Let us denote by ΓSG the above described SG. By (9),
we can present (14) in closed form as follows:

Ψ(P ) =
∑
i∈I(P )

qiψi(P ) + ψ0(P )
∑
i6∈I(P )

qi − CPP, (15)

where ψi(P ) , ln
(

1 + 2√
1+4gi/(CJhP )−1

)
and ψ0(P ) ,

ln
(
1 + hP/σ2) .

Theorem 2 If the set of active jammer types is empty
(i.e., (13) holds), or the user is non-active (i.e., (4)
holds), then ΓSG has a unique SE, which coincides with
NE given by Corollary 1(b) and (5) correspondingly.
Let us now consider the case in which the set of active
jammer types is non-empty and user is active, i.e.,

g > CJσ
2 and h > CPσ

2. (16)

By (16), the set I(P ) defined in (10) can be presented
in the following equivalent form:

I(P ) = {i ∈ {1, . . . , n} : P ≥ Pi} ,
where Pi , σ4/(h(gi/CJ − σ2)). Based on (16), it holds
that Pi > 0 for any i. Without loss of generality we can
assume that g1 > g2 > . . . > gn. Thus, P1 < P2 < . . . <
Pn. Let P0 = 0 and Pn+1 = ∞. For each P there is an
integer t = t(P ) ∈ {0, ..., n} such that Pt ≤ P < Pt+1.
Then, (15) can be presented as follows:

Ψ(P ) = Ψt(P ) ,
t∑
i=1

qiψi(P ) + ψ0(P )
n∑

i=t+1

qi − CPP. (17)

Based on (17), Ψ(P ) is continuous for P > 0 and dif-
ferentiable everywhere except on the finite set P =
{P1, . . . , Pn}. Moreover,
dΨ
dP

(P ) = dΨt

dP
(P ) = ξt(P )− CP for P ∈ (Pt, Pt+1), (18)

where

ξt(P ) ,
t∑
i=1

qi

√
CJh

(CJhP + 4gi)P
+ h

σ2 + hP

n∑
i=t+1

qi. (19)

Let us formulate the following two auxiliary lemmas.

Lemma 1 (a) dψ0
dP = h

σ2+hP and d2ψ0
dP 2 = − h2

(σ2+hP )2 ,

(b) dψi

dP =
√

CJh
(CJhP+4gi)P and d2ψi

dP 2 = −
√

CJh(CJhP+2gi)2

(CJhP+4gi)3P 3 ,
(c) ξt(Pt) < ξt−1(Pt).

Lemma 2 There is the unique t∗ such that one of the
following two relations holds:

ξt∗ (Pt∗ ) ≤ CP ≤ ξt∗−1(Pt∗ ), (20)
ξt∗ (Pt∗+1) < CP < ξt∗ (Pt∗ ). (21)

In the following theorem we prove the uniqueness of SE
and also find SE is in closed form.

Theorem 3 Let us assume that (16) holds. The ΓSG
has a unique SE P, Ji = BRJ,i(P ), i = 1, . . . , n, where
(i) if (20) holds then P = Pt∗ ,
(ii) if (21) holds then P is the unique root in (Pt∗ , Pt∗+1)
of the equation ξt∗(P ) = CP . Moreover, because ξt∗ is a
decreasing function, such P can be found via the bisection
method.
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4. DISCUSSION OF THE RESULTS

We consider a set of channel states consisting of q2 =
1 − q1 (n = 2), and σ2 = 1, CP = 0.2, CJ = 0.2, h = 1,
(g1, g2) = (10, 1). Fig. 2 illustrates the dependence of
user and jammer strategies on a priori probability q1.
Note that the absence of a hierarchical structure for mak-
ing decision in the Nash game can be interpreted as the
Nash game having higher power consumption as com-
pared to Stackelberg game. Fig. 2 illustrates that Nash
equilibrium strategies assign higher power to transmit
signals than Stackelberg equilibrium strategies. Thus,
on one hand, the higher competition in Nash game as
compared to Stackelberg game makes the user and the
jammer transmit in higher power, on the other hand, the
lower competition of the Stackelberg game as compared
to Nash game could make the strategies less sensitive to
a priori information on jammer’s location varying net-
work parameters. This phenomena is reflected by flat
segments in rival’s strategies occurring when case (i) of
Theorem 3 holds. In this case the value of strategy Pt∗
does not depend on {qi}, while the interval of such non-
sensitivity given by (19) and (20), depends on {qi}.

Appendix
Proof of Theorem 1: Since vU (P,J) is concave on P ,
and vJ,i(P, Ji) is convex on Ji, the Nash’s theorem [2].
implies existence of at least one equilibrium. To prove
uniqueness as well as to design equilibrium strategies
in closed form we have to solve directly the best re-
sponse equations (2). Since vU (P,J) is concave in P ,
and vJ,i(P, Ji) is convex in Ji, P and J are the solution
of the response equations (2) and (3) if and only if the
following conditions hold:

n∑
i=1

qi
h

σ2 + hP + giJi

{
= CP , P > 0,
≤ CP , P = 0,

(22)

hgiP

(σ2 + giJi)(σ2 + hP + giJi)

{
= CJ , Ji > 0,
≤ CJ , Ji = 0.

(23)

By (23), if P = 0 then Ji = 0. Then, by (22), (0,0)
is an equilibrium if and only if (4) holds. Thus, we can
assume that P > 0. Let us consider separately only two
possible cases: (I) J = 0 and (II) J 6= 0.

(I) Let J = 0. On substituting J = 0 into (22) we
get (7). Moreover, since P > 0, via (7), we get that

CP /h < 1/σ2. (24)

On substituting (7) into (23) we get that the following
relation should hold for any i:

giCP
(
1/CP − σ2/h

)
/σ2 ≤ CJ . (25)

Fig. 2. The user’s strategy (left) and jammer’s strategy (right) as
functions on q1, where “(i)” and “(ii)” on the graph correspond to the
cases of Theorem 3.

The last inequality is equivalent to 1/σ2−CJ/gi ≤ CP /h.
Since the last inequality has to hold for any i, (24) yields
(6), and then (b) follows.

(II) Let J 6= 0. Note that

hgiP/((σ2 + giJi)(σ2 + hP + giJi)) = CJ (26)

is equivalent to the following quadratic equation

x2 + hPx− gihP/CJ = 0 (27)

with x = σ2+giJi. This equation has the unique positive
root

x = −hP/2 +
√

(hP/2)2 + gihP/CJ . (28)

Since Ji ≥ 0, then, x ≥ σ2. Substituting (28) into x ≥ σ2

implies that i has to belong to I(P ) given by (10). This
and (22) implies (9) and that P is the root of the equation
(11), and the result follows.

Proof of Theorem 2: By Corollary 1(a), we have
that if (13) holds then Ψ(P ) = ln(1 + hP/σ2) − CPP .
This is utility of CDMA transmission in absent of the
jammer [19]. This straightforward implies the result.

Proof of Lemma 1: (a) and (b) follow by straight-
forward calculation. By (16) and (19), ξt(Pt)−ξt−1(Pt) =
− h(gt−CJσ

2)2

σ2(2gt−CJσ2) < 0, and the result follows.

Proof of Lemma 2: The result follows from (19)
and Lemma 1.

Proof of Theorem 3: Ψ(P ) is differentiable on P
apart from finite set of points P. By Lemma 1 and (18)
we have that there exists P̃ such that

lim
τ↑P

dΨ
dP

(τ) and lim
τ↓P

dΨ
dP

(τ)
{
> CP , P < P̃ ,

< CP , P > P̃ .
(29)

Here, upper limit and lower limit coincide for each P 6∈
P. Thus, by (29), Ψ(P ) achieves its maximum at the
unique point, and this point is P = P̃ . By Lemma 1 and
Lemma 2, P̃ = P∗, and the result follows.
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