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ABSTRACT

Quickest detection of false data injection attacks (FDIAs) in

dynamic smart grids is considered in this paper. The unknown

time-varying state variables of the smart grid and the FDIAs

impose a significant challenge for designing a computation-

ally efficient detector. To address this challenge, we propose

new Cumulative-Sum-type algorithms with computational

complex scaling linearly with the number of meters. More-

over, for any constraint on the expected false alarm period,

a lower bound on the threshold employed in the proposed

algorithm is provided. For any given threshold employed

in the proposed algorithm, an upper bound on the worst-

case expected detection delay is also derived. The proposed

algorithm is numerically investigated in the context of an

IEEE standard power system under FDIAs, and is shown to

outperform some representative algorithm in the test case.

Index Terms— Cybersecurity, cumulative sum, false data

injection attacks, dynamic smart grid systems.

1. INTRODUCTION

In a smart grid, the meter measurements are collected and

employed at a control center to estimate state variables of the

smart grid, such as bus voltages and phase angles, and then

the operation of the smart grid is performed and controlled

based on these estimated states. If any adversary can falsify

the meter measurements, the control center may produce er-

roneous state estimates, which give rise to wrong decisions on

billing, power dispatch, and even blackout. In light of this, it

is of paramount importance for modern smart grid systems to

have the capability of detecting malicious attacks as quickly

as possible. The sequential change detection (also known as

quickest detection), which minimizes the expected detection

delay subject to certain constraint on the average false alarm

period, enables online monitoring for smart grid systems, and

therefore suits well to attack detection in such systems.

We assume the measurements from a set of meters are cor-

rupted by additive malicious data. Such attacks are referred to

as false data injection attacks (FDIAs), which are considered

as one of most detrimental attacks to smart grid systems [1].

The set of attacked meters and the injected malicious data are

time-varying and unknown to the control center. In addition,

we assume that the state variables of the smart grid system are

dynamic, and also unknown to the control center. It is worth

mentioning that we don’t make any assumption on how the

state variables of the system evolve over time. The control

center aims at detecting any FDIAs as soon as possible when

they are launched, and the quickest detection scheme is the

focus of this paper.

In [2], an adaptive Cumulative Sum (CUSUM) algorithm

is proposed which builds on the assumption that the state vari-

ables of the smart grid follow a Gaussian prior and the FDIA

at any time is always positive and small. Another sequential

algorithm based on the Rao test statistic is proposed for static

smart grid systems in [3]. The quickest detection of FDIA in

smart grids is investigated in [4], where the set of effective

attacked meters is assumed to be fixed over time. More re-

cently, in [5], a CUSUM-type algorithm based on the Kalman

filter is proposed, which assumes that the state variables of the

smart grid evolve over time by following a fixed linear model.

In this paper, we consider a more general model, and none of

these approaches can be applied here, since no such assump-

tions made in [2–5] are made in this paper. Moreover, no

performance analysis is provided for the approaches in [2–5],

while we pay more attention to the performance characteri-

zation of the proposed approach with the aim of providing

provable detection performance guarantee in this paper. The

main contributions are summarized as follows.

(1) We propose new CUSUM-type algorithms which are ro-

bust to arbitrarily time-varying state variables and arbi-

trary FDIAs. Moreover, the computational complexity of

the proposed algorithms just scales linearly with the num-

ber of meters in the power system.

(2) For any constraint on the expected false alarm period,

a lower bound on the threshold employed in the pro-

posed algorithm is derived, which provides a guideline

for the design of the proposed algorithm to achieve the

prescribed performance requirement..

(3) For any given threshold employed in the proposed algo-

rithm, an upper bound on the worst-case expected detec-

tion delay is provided.
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2. PROBLEM STATEMENT

Consider M meters in an (N + 1)-bus smart grid system.

Let θ(t) ∈ �N denote the time-varying N phase angles (one

reference angle) at time t, and let x(t) ∈ �M denote the mea-

surements of the power flows and power injections at the M
meters at time instant t. Then the dynamic direct current (DC)

power flow model of the system can be formulated as

x(t) = Hθ(t) + n(t) (1)

where H ∈ �
M×N is the measurement matrix which de-

pends on the topology of the smart grid, the placement of the

meters, and the susceptance of each transmission line. Typ-

ically, the number of measurements is greater than that of

the unknown parameters in order to provide necessary redun-

dancy against the noise effect, i.e., M > N . In addition, we

assume that {n(t)} is a sequence of independent and identi-

cally distributed (i.i.d.) noise vectors obeying Gaussian dis-

tribution with 0 mean and covariance σ2IM .

Suppose that at time ta, a malicious attacker intention-

ally manipulates the observation vector x(t) by injecting a

sequence of unknown false data {b(1),b(2),b(3), ...} to the

smart grid. Accordingly, we write the attack-incurred obser-

vation change as{
x(t) = Hθ(t) + n(t), if t < ta,
x(t) = Hθ(t) + a(t) + n(t) if t ≥ ta,

(2)

where a(ta+t−1) = b(t) for any ta and t ≥ 1. Note that

the injected false data a(t) can be decomposed into two parts

a(t) = Hc(t) + μ(t) where Hc(t) denotes the component of

a(t) that lies in the column space of H, while μ(t) represents

the component of a(t) that lies in the complementary space

R⊥(H) of the column space of H, that is

μ(t) = P⊥
Ha(t) ∈ R⊥(H) (3)

where P⊥
H � I −H

(
HTH

)−1
HT . As demonstrated in [6],

μ(t) is the only informative part of the injected false data that

is detectable. The reason is that since the parameter vector

θ(t) is unknown, the other part Hc(t) of a(t) is not distin-

guishable from Hθ(t), and hence can bypass any monitoring

system.

Let ρL and ρU denote the lower and upper bounds on

the magnitudes of the nonzero elements of μ(t), respectively.

The constant ρL indicates the minimal magnitude of μ(t) that

draws security concerns, and the constant ρU represents the

limited power of the adversaries. Let A(t) represent the set of

nonzero elements of μ(t) at time instant t. As such, we can

write the attack-incurred change event of interest as

t < ta : μ
(t)
m = 0,m = 1, 2, ...,M,

t ≥ ta :

{
ρL ≤ |μ(t)

m | ≤ ρU ,m ∈ A(t),

μ
(t)
m = 0,m /∈ A(t),

(4)

where μ
(t)
m is the m-th element of μ(t). It is worth mention

that since μ(t) can be time-varying, the set A(t) can also be

distinct over time. The quickest detection technique, that ex-

ploits the statistical difference before and after ta, provides a

suitable framework to achieve this goal. The commonly used

performance measure, proposed by Lorden, is the worst-case

expected detection delay which is defined as [7]

J (T )
Δ
= sup

ta

ess sup
Fta−1

�ta

{
(TR − ta + 1)

+
∣∣∣Fta−1

}
, (5)

where the random variable T is a stopping time correspond-

ing to a certain sequential detection scheme and Fta is the

filtration generated by all the observations up to time ta. The

expectation �ta is evaluated with respect to the true distri-

bution of x(1), x(2), x(3), ... when the attack occurs at time

instant ta. The quickest detection problem is formulated as

follows:

inf
T

J (T ) subject to �∞ {T} ≥ γ. (6)

Note that the expectation �∞ is evaluated with respect to the

probability measure where ta = ∞, i.e., no attack occurs,

and γ is a prescribed constant which specifies the required

lower bound on the expected false alarm period. Before pro-

ceeding, we denote the pre-attack and post-attack probability

density functions of the observation x(t) as fu(x
(t)

∣∣θ(t) ) and

fa(x
(t)

∣∣θ(t),a(t) ), respectively. If all the parameters {θ(t)}
and {a(t)} are known, the quickest detection problem in (6)

is optimally solved by the well-known CUSUM test [8]

TC=min

{
K : max

1≤k≤K

K∑
t=k

ln
fa

(
x(t)

∣∣θ(t),a(t)
)

fu
(
x(t)

∣∣θ(t)
) ≥h

}
(7)

where the threshold h is determined by the constraint in (6).

However, in the problem considered in this paper, the

parameters {θ(t)} and {a(t)} are unknown, causing the

CUSUM test infeasible. To address this, this paper resort

to the generalized likelihood ratio (GLR) method by replac-

ing the unknown parameters with their maximum likelihood

estimates (MLE) [9, 10].

3. RELAXED GENERALIZED CUSUM TEST

3.1. Generalized CUSUM Test

Based on the model of the attack-incurred change event in (4),

by replacing the unknown parameters {θ(t)} and {a(t)} with

their MLEs in (7), the generalized CUSUM (GCUSUM) test

can be written as

TG = min

{
K : max

1≤k≤K
sup

{A(t)}
Λ
(K)
k ≥ h

}
, (8)

where the statistic Λ
(K)
k is defined in (9) on the top of the

next page. Considering that {n(t)} is i.i.d. white Gaussian
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Λ
(K)
k

Δ
= ln

sup
θ(t),a(t):{ρL≤|μ(t)

m |≤ρU}
m∈A(t) ,μ(t)∈R⊥(H)

k−1∏
t=1

fu
(
x(t)

∣∣θ(t)
) K∏
t=k

fa
(
x(t)

∣∣θ(t),a(t)
)

sup
θ(t)

K∏
t=1

fu
(
x(t)

∣∣θ(t)
) =

K∑
i=k

Λ
(K)
k,t . (9)

Λ
(K)
k,t = sup

μ(t):{ρL≤|μ(t)
m |≤ρU}

m∈A(t) ,μ(t)∈R⊥(H)

1

2σ2

∑
m∈A(t)

[
2μ(t)

m x̃(t)
m −

(
μ(t)
m

)2
]
. (10)

noise with zero mean and covariance σ2IM , the Λ
(K)
k,t in (9)

can be simplified to (10) on the top of this page, where x̃
(t)
m is

the m-th elements of x̃(t), and x̃(t) is the component of x(t)

in the complementary space of the column space of H, i.e.,

x̃(t) Δ
= P⊥

Hx(t).

It is seen from (10) that there is no closed-form expres-

sion for Λ
(K)
k,t in general. Hence, to obtain the decision statis-

tic in (8), we need to numerically obtain Λ
(K)
k,t for each A(t),

and then maximize Λ
(K)
k over all possible A(t) as illustrated

in (8). Since the number of possible A(t) is on the order of

2M , it is not feasible to implement the GCUSUM test in (8)

in practice especially when M is large, which motives us to

pursue more computationally efficient algorithms.

3.2. Relaxed GCUSUM Test

In order to facilitate the computation of Λ
(K)
k,t , we relax the

constraint μ(t) ∈ R⊥(H) in (10), and correspondingly, Λ
(K)
k,t

can be bounded from above as per

Λ
(K)
k,t

≤ sup
μ(t):{ρL≤|μ(t)

m |≤ρU}
m∈A(t)

1

2σ2

∑
m∈A(t)

[
2μ(t)

m x̃(t)
m −

(
μ(t)
m

)2
]

=
∑

m∈A(t)

ζ(t)m � Λ̃
(K)
k,t , (11)

where

ζ(t)m �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2σ2

(
x̃
(t)
m

)2

if ρL ≤
∣∣∣x̃(t)

m

∣∣∣ ≤ ρU ,

1
2σ2

(
2
∣∣∣x̃(t)

m

∣∣∣ ρL − ρ2L

)
if

∣∣∣x̃(t)
m

∣∣∣ < ρL,

1
2σ2

(
2
∣∣∣x̃(t)

m

∣∣∣ ρU − ρ2U

)
if

∣∣∣x̃(t)
m

∣∣∣ > ρU .

(12)

As a result, by replacing Λ
(K)
k,t with Λ̃

(K)
k,t in (9), a relaxed

generalized CUSUM (RGCUSUM) test can be expressed as

TR = min

{
K : max

1≤k≤K
sup

{A(t)}

K∑
t=k

Λ̃
(K)
k,t ≥ h

}

= min

{
K :

K∑
t=1

M∑
m=1

max
{
ζ(t)m , 0

}
≥ h

}
. (13)

It is seen from (12) and (13) that the RGCUSUM is more

amenable than the GCUSUM to implementation in practice,

since the computational complexity of the RGCUSUM just

scales linearly with the number M of meters.

4. PERFORMANCE ANALYSIS OF THE RGCUSUM

In this section, we provide the performance analysis of our

proposed RGCUSUM test. In particular, we provide a suffi-

cient condition under which the constraint in (6) can be guar-

anteed, which sheds insight into the design of the proposed

RGCUSUM test to achieve the prescribed performance re-

quirement. Moreover, an upper bound on the worst-case ex-

pected detection delay defined in (5) is derived for any h.

Let pT
i denote the i-th row of the projection matrix P⊥

H,

i.e., P⊥
H = [p1,p2, ...,pM ]

T
. As demonstrated in (6), the

expected running length of the RGCUSUM under no attack

needs to be guaranteed to be larger than the required lower

bound γ to avoid frequent false alarms. In general, we can set

the threshold h in (13) to be sufficiently large so that the con-

straint in (6) is satisfied. In the following, we provide a suf-

ficient condition on h which can guarantee that the expected

false alarm period of the RGCUSUM is larger than the pre-

scribed γ.

Theorem 1 The constraint on the expected false alarm pe-
riod in (6), i.e., �∞ {T} ≥ γ, is satisfied provided that

h ≥ γ

M∑
m=1

(
1

2
‖pm‖22 +

ρL + ρU
σ

‖pm‖2
√

2

π

)
. (14)

The proof of Theorem 1 is omitted due to space constraints.

It is worth mentioning that the lower bound on h in (14) is

only determined by the projection operator P⊥
H, the variance

of the noise, and the prescribed lower and upper bounds on

the magnitude of the nonzero elements of μ(t). Therefore,

when γ is given, the lower bound on h in (14) can be cal-

culated beforehand, and then employed in the RGCUSUM.

Hence, Theorem 1 provides a guideline for the design of the

proposed RGCUSUM to achieve the prescribed performance

requirement.

Besides the expected false alarm period, another key per-

formance measure for quickest detection is the worst-case ex-

pected detection delay defined in (5). We have the following
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theorem regarding the worst-case expected detection delay of

the proposed RGCUSUM.

Theorem 2 By employing Wald’s approximations [10], i.e.,
ignoring the expectation of the overshoots in the presence of
attacks, for any given h, the worst-case expected detection
delay of the RGCUSUM can be bounded from above as per

J (TR) ≤ h

{
M∑

m=1

ρ2L
2σ2

[
erf

(
2ρU√

2σ‖pm‖2

)

− erf

(
ρL + ρU√
2σ‖pm‖2

)]}−1

, (15)

where the function erf (x)
Δ
= 2√

π

∫ x

0
e−s2ds.

The proof of Theorem 2 is omitted due to space constraints,

which is based on the fact that the RGCUSUM can be shown

to have the equalizer rule. As demonstrated in Theorem 2,

the worst-case expected detection delay of the RGCUSUM

can be bounded by a term which is proportional to the thresh-

old h. It is worth mentioning that Wald’s approximations are

employed in Theorem 2, which implicitly assumes that the

expectation of the overshoot should be negligibly small when

compared to the threshold h. We have numerically examined

the validity of the Wald’s approximations in some practical

cases, and the numerical results show that the Wald’s approx-

imations are valid when h is large.

5. NUMERICAL RESULTS

In this section, we consider the standard IEEE-14 bus power

system to test the performance of the proposed RGCUSUM,

and the measurement matrix H in (1) is determined accord-

ingly for the DC model of the power system. The initial state

of the power system is defined in the MATPOWER “case14”

[11]. We assume that the resistive load at one bus decreases

by 100 watts per time instant, while the resistive loads at other

two buses increase by 100 watts per time instant. As such,

the state variables of the smart grid evolve accordingly over

time. Although the proposed RGCUSUM can be applied to

the cases where the FDIA a(t) is time-varying, for simplicity,

a(t) is set to be a constant vector in the simulations, which is

a(t) = [−2.629,−2.704, 2.781, 2.923, 0.516,−0.936, 1.969,

− 3.938,−0.033, 0,−0.483,−0.033,−1.934, 1.934,−1.934,

4.259, 2.842, 0.110, 1.314,−0.520, 2.195,−0.046, 1.778]T .

In Fig. 1, we scrutinize the performance of the proposed

RGCUSUM, and compare it with that of a representative ap-

proach, called adaptive CUSUM algorithm proposed in [2].

In the simulation, the variance of noise σ2 = 0.005, and ρL
and ρU are set to be 0.025 and 100, respectively. The num-

ber of Monte Carlo runs is 300. It is seen from Fig. 1 that

for a given average false alarm period, the average detection

delay of the proposed RGCUSUM is shorter than that of the

adaptive CUSUM algorithm, which implies that the proposed

RGCUSUM can detect the FDIA more efficiently than the

adaptive CUSUM test. This is expected since the adaptive

CUSUM test builds on some assumptions on the model as

mentioned in Section 1. However, these assumptions do not

hold for the simulation setup. The efficiency loss of the adap-

tive CUSUM test may be brought about by the model mis-

match. Moreover, the adaptive CUSUM test requires that the

FDIA is positive and small, and hence is prone to efficiency

loss for large and negative FDIA, which is the case in the sim-

ulation.
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Fig. 1: Performance Comparison between the RGCUSUM

and the Adaptive CUSUM Test in [2].

6. CONCLUSIONS

In this paper, we have considered the problem of sequentially

detecting time-varying FDIAs in dynamic smart grids. New

CUSUM-type algorithms have been proposed to address this

problem, and we have shown that the computational complex-

ity of the proposed algorithm scales linearly with the number

of meters in the smart grid. Furthermore, we also have pro-

vided performance analysis for the proposed algorithm. To be

specific, considering Lordon’s setup, for any given constraint

on the expected false alarm period, a lower bound on the

threshold employed in the proposed algorithm has been de-

rived. Furthermore, for any given threshold employed in the

proposed algorithm, we have provided an upper bound on the

worst-case expected detection delay. In the end, the perfor-

mance of the proposed algorithm has been numerically stud-

ied based on an IEEE standard power system under FDIAs.
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