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ABSTRACT

Secret key generation refers to the problem of generating a common
secret key without revealing any information about it to an eaves-
dropper. All users observe correlated components of a common
source and can further use a rate-limited public channel for discus-
sion which is open to eavesdroppers. This paper studies the Turing
computability of the secret key capacity with a single rate-limited
public forward transmission. Turing computability provides funda-
mental performance limits for today’s digital computers. It is shown
that the secret key capacity under rate constraints is not Turing com-
putable, and consequently there is no algorithm that can simulate or
compute the secret key capacity, even if there are no limitations on
computational complexity and computing power. On the other hand,
if there are no rate constraints on the forward transmission, the se-
cret key capacity is Turing computable. This shows that restricting
the communication rate over the public channel transforms a Turing
computable problem into a non-computable problem. To the best
of our knowledge, this is the first time that such a phenomenon has
been observed.

Index Terms— Secret key generation, secret key capacity, rate
constraint, Turing computability.

1. INTRODUCTION

Secret keys shared by transmitter and receiver can be used for en-
cryption to keep eavesdroppers ignorant and thus enable a subse-
quent secure communication. Accordingly, it is an important task to
generate secret keys at distant locations in such a way that possible
eavesdroppers obtain no information about them.

Current approaches at higher layers are usually based on cryp-
tographic principles. These have a wide variety of uses and rely
on the assumption of insufficient computational capabilities of non-
legitimate receivers. Due to increasing computational power, im-
proved algorithms, and recent advances in number theory, these tech-
niques are becoming less and less secure. Here we consider a phys-
ical layer or information theoretic approach to security [1-4]. This
approach is not only relevant for the task of secret key generation
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[5, 6], but also for secure communication [7] and authentication [8].
Accordingly, this approach has been identified to be a promising can-
didate to meet the strict requirements on reliability, robustness, and
latency of future communication systems such as the Tactile Inter-
net, cf. for example [9] for a detailed discussion. It further plays a
major role in the concept of physical layer service integration [10].

The generation of secret keys is done by using observations of a
common source. This was first studied by Ahlswede and Csiszar [5]
and Maurer [6]. To this end, two users Alice and Bob observe corre-
lated components of a source and further use a noiseless channel for
additional discussion. Information sent over the noiseless channel
is public and therefore known to possible eavesdroppers. Thus, the
task is to use the public channel in such a way that both users can
generate a common secret key using their source observations and,
at the same time, keeping eavesdroppers ignorant of it. Secret key
generation is further studied in [8, 11-13]. Particularly in [5, 6] the
communication over the public channel is not rate-limited, i.e., an
arbitrary amount of information can be exchanged in order to enable
the secret key generation.

This work particularly addresses the need for secrecy require-
ments and for the spectrally efficient use of resources. Such require-
ments are usually first identified and proposed by national agencies
for security and subsequently reviewed and verified by governmental
agencies. The overall process is very complex and imposes signifi-
cant challenges. Particularly, the ever increasing number of new and
evolving (communication) systems makes it practically impossible
to effectively verify the afore imposed requirements. Even worse, to
date, it is not clear how to decide and prove whether or not a certain
system satisfies the requirements.

The verification task, i.e., the effective validation of whether or
not a secret key generation system meets its performance require-
ments, has drawn surprisingly little attention. To address this issue,
we use the concept of a Turing machine [14-16]. This is a mathe-
matical model of an abstract machine that manipulates symbols on
a strip of tape according to certain given rules. It can simulate any
given algorithm and therewith provides a simple but very power-
ful model of computation. Turing machines have no limitations on
computational complexity, unlimited computing capacity and stor-
age, and execute programs completely error-free. Accordingly they
provide fundamental performance limits for today’s digital comput-
ers and they are the ideal concept to decide whether such a verifica-
tion task is effectively possible at all. With the latter we mean that
we are interested in understanding whether or not this task can in
principle be solved algorithmically (without putting any constraints
on the computational complexity of such algorithms).

In this work, we study secret key generation with a single rate-
limited forward transmission. Obviously, the public forward trans-
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Fig. 1. Secret key generation with a single forward transmission.
Eve observes an own observation Z" of the source as well as the
helper message ¢(X™).

mission is an important resource which needs to be effectively ex-
ploited in the secret key generation process. We show that when
the public communication is not rate-limited, the corresponding se-
cret key (SK) capacity displays a simple algorithmic structure in the
sense that it is Turing computable. On the other hand, we show
that when the forward transmission is rate-limited, the correspond-
ing SK capacity becomes non-computable displaying a much more
complicated algorithmic structure. This shows that imposing a rate
constraint on the public forward transmission transforms a Turing
computable problem into a non-computable problem. Accordingly,
there is a strict phase transition between both regimes and, to the best
of our knowledge, this is the first time that such a phenomenon has
been observed.

In practical systems, the public communication will always be
rate-limited. Furthermore, it will usually take place over noisy com-
munication channels which has been studied in [17]. This is partic-
ularly relevant for new communication scenarios such as molecular
communication, for which security-related questions are relevant as
well. In [18] an overview of molecular communication and its future
applications is given. There, a secret key shared between transmitter
and receiver can be used for private or secret synchronization.!

2. SECRET KEY GENERATION

Here, we introduce the model of secret key generation as shown in
Fig. 1. It consists of two legitimate users Alice and Bob, who want
to generate a secret key keeping the eavesdropper Eve ignorant of it.

Let X, ), and Z be finite alphabets. Alice, Bob, and Eve have
access to a common random source which is characterized by its
joint distribution Pxyz € P(X x Y x Z). Alice observes the
source outputs X" = (X1,..., X,) € X", Bob observes Y" =
(Y1,...,Y,) € V", while Eve observes Z" = (Z1,...,Z,) € Z".
Additionally, a rate-limited public channel is available for further
communication and discussion.

After having received their source observations, Alice and Bob
can use the public channel to exchange helper data to agree on the
same secret key. Everything that is sent over this channel is available

! Notation: Discrete random variables are denoted by capital letters and
their realizations and ranges by lower case and script letters, respectively; N,
R, and R, are the sets of non-negative integers, real numbers, and computable
real numbers; P(X’) denotes the set of all probability distributions on X’;
1P —Qll = > ca |P(a) — Q(a)] is the total variation distance between
PeP(A)and Q € P(A).

to Eve as well. Permissible secret key generation protocols over the
public channel can be quite general including multiple iterations of
forward and backward transmissions as well as randomized strate-
gies, cf. for example [5]. In this paper, we consider the case of a
single forward transmission only so that the secret key generation
protocol reduces to the following steps:

e After having received the observations X™ and Y™ at Alice
and Bob, Alice transmits a helper message ¢(X™) over the
public channel to Bob.

e Both Alice and Bob compute the secret key as

Ka=Ka(X") and Kp(Y", ¢(X")) M

with K4, Kp € K and K is the set of all possible keys.

A successful secret key generation protocol has to satisfy certain
conditions as specified in the following definition.

Definition 1. A number Rsk is said to be an achievable SK rate if
for any € > 0 and sufficiently large n there is a permissible protocol
with rate constraint R such that K 4 and K g, cf. (1), satisfy

P{Ki# Kp} <e (2a)
I(¢(X"), 2" Ka) <e (2b)
LH(Ka) > Rk — ¢ (2¢)

Llog|K| < LH(Ka)+e€ (2d)
»logllé < R+e (2¢)

The forward SK capacity Csk(R, Pxyz) is the largest achievable
SK rate. If there is no rate constraint, then condition (2e) is inactive
and the forward SK capacity is denoted by Csx(Pxy z).

Here, condition (2a) ensures that both Alice and Bob have gen-
erated the same key. Condition (2b) ensures that this key is secret,
i.e., Eve who has access to the public transmission ¢(X™) and its
own observation Z" learns nothing about the secret key. Condition
(2d) finally states that the secret key is nearly uniformly distributed.

Remark 1. As the task of Alice and Bob is to generate a common
key, this scenario is often referred to as generated secret key. There
is variation of this scenario in which a certain secret key is given to
Alice and the task is to generate the same key at Bob. As the secret
key is chosen before the actual secret key generation process, this is
often called chosen secret key. It perfectly applies to the application
of secure data storage in which confidential information needs to be
securely stored in a public database, cf. for example [19].

Now we can state the forward SK capacity with rate constraint.

Theorem 1 ([11], [20]). The forward SK capacity Csx(R, Pxy z)
for the source Pxy 7 with rate constraint R € RY is

Csk(R, Pxyz) = max [I(V;Y|U) — I(V; Z|U)]

such that

U-V-X-%,2Z) and I(V;X]Y)<R.
Moreover, it is may be assumed that V. = (U, V') where the cardi-
nalities of the alphabets of both U and V' are at most | X| + 1, cf.
also [21, Theorem 17.21].

If Eve has no access to the source and does not observe an own
correlated version, the forward SK capacity simplifies as follows.
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Corollary 1. The forward SK capacity Csx(R, Pxy) for the source
Pxy with rate constraint R € R is

CSK(R, ny) = m‘?x I(V, Y)

such that
V-X-Y and I(V;X|Y)<R.

For R — oo, the rate constraint becomes inactive and the corre-
sponding forward SK capacity is given as follows.

Corollary 2 ([5]). The forward SK capacity Csg(Pxyz) for the

source Pxvy z is

CSK(nyz) = rgfm‘;( [[(V,Y|U) — I(V, Z|U)]

such that U — V — X — (Y, Z) form a Markov chain. Moreover,
it is may be assumed that V. = (U, V') where the cardinalities of
the alphabets of both U and V' are at most |X| + 1, cf. also [2],
Theorem 17.21].

We see that the SK capacity Csk is a function of the rate con-
straint R and the underlying source Pxyz. In the following we
study whether or not the SK capacity is Turing computable, i.e.,
whether or not there exists an algorithm (or Turing machine) that
can compute the function Csk.

3. COMPUTABILITY FRAMEWORK

Here, we formally introduce the computability framework for which
we need some basic definitions and concepts briefly reviewed in the
following. The concept of computability and computable real num-
bers was first introduced by Turing in [14] and [15].

A sequence of rational numbers {7, } nen is called a computable
sequence if there exist recursive functions a,b,s : N — N with
b(n) # 0 forall n € Nand
s(n) a(n)

b(n)’
cf. [22, Def. 2.1 and 2.2] for a detailed treatment. A real number
x is said to be computable if there exists a computable sequence of
rational numbers {7, }»ecn such that

rn = (—1) n €N,

|z —r,| <277

for all n € N. We denote the set of computable real numbers by R..
Based on this, we define the set of computable probability distribu-
tions P.(X) as the set of all probability distributions P € P(X)
such that P(z) € R¢, x € X. This is important since a Turing
machine can only work with computable real numbers.

Definition 2. A function f : R. — R is called Borel computable
if there is an algorithm that transforms each given computable se-
quence of a computable real x into a corresponding representation

for f(x).

We note that Turing’s definition of computability conforms to
the definition of Borel computability above. There are weaker
forms of computability known as Markov computability and Banach-
Mazur computability, of which the latter one is the weakest form of
computability. In particular, Borel or Markov computability implies
Banach-Mazur computability, but not vice versa. For an overview of
the logical relations between different notions of computability we
again refer to [23] and the introductory textbook [16].

We further need the concepts of a recursive set and a recursively
enumerable set as for example defined in [22].

Definition 3. A set A C N is called recursive if there exists a com-
putable function f such that f(z) = 1ifz € Aand f(z) = 0 if
z ¢ A

Definition 4. A ser A C N is recursively enumerable if there exists
a recursive function whose domain is exactly A.

We have the following properties, cf. for example [22]

e A is recursive is equivalent to A is recursive enumerable and
A€ is recursively enumerable.

e There exist recursively enumerable sets .A C N that are not
recursive, i.e., A€ is not recursively enumerable. This means
there are no computable, i.e., recursive, functions f : N —
A° with [f(N)] = A°.

Now we are in the position to introduce the concept of a Tur-
ing machine. Turing machines account for all those problems and
tasks that are algorithmically solvable on a classical (i.e., non-
quantum) machine. They are further equivalent to the von Neumann-
architecture without hardware limitations and the theory of recursive
functions, cf. also [24-27].

The task of a Turing machine ¥ is to verify the efficiency and
security of a given secret key generation protocol as introduced in
the previous section. To this end, let k£ specify the efficiency of the
secret key generation protocol where 1/k is the maximum gap of the
SK rate Rsk to the forward SK capacity Csg. The Turing machine
should output a “yes” if and only if the secret key generation protocol
satisfies the performance requirements, cf. (2), and

1
Csk — Rsk < .
k
In particular, for verification of the latter condition, it is necessary
that the forward SK capacity Csk itself is Turing computable. This
question is studied in detail in the next section.

4. NON-COMPUTABILITY

In this section, we study the Turing computability of the forward SK
capacity Csk. First, we study the case without rate constraints as
stated in Corollary 2. The following result shows that the forward
SK capacity is indeed Turing computable as expected.

Theorem 2. The forward SK capacity Csg(Pxvy z) is Turing com-
putable.

Sketch of Proof. Since xlog, x, z € [0, 1], is a Borel computable
function, the functions I(V;Y|U) and I(V; Z|U) for Puvxyz €
PeU xV x X x Y x Z) are computable as well. Then, the ca-
pacity function Csk (Pxyz) = maxy,v [[(V;Y|U) — I(V; Z|U)]
is a computable function since it is the maximum of a difference of
computable functions. We refer to [16] for a detailed introduction
and discussion of these concepts and properties that are used here.

The next result shows that C'sk becomes non-computable when
the forward transmission is rate limited.

Theorem 3. Forall |X| > 2, |Y| > 2, and |Z| > 2, the forward
SK capacity Csg(R, Pxy z) is not Banach-Mazur computable and
therewith also not Turing computable.

Before proving the result, we want to outline the important steps
of the proof. For R — o0, i.e., the rate constraint of the forward
transmission is inactive, the forward SK capacity becomes

Csk(Pxyz) = max [I(V;Z|U) — I(V; Z|U)]
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and this expression is Turing computable on the set of computable
joint distributions P.(U X V x X x Y x Z), cf. Theorem 2. We
see also that the rate constraint R will play a crucial role for the
non-computability of Csk.

Instead of proving Theorem 3 directly, we argue further that
it is sufficient to prove the non-computability for the special case,
in which Eve does not receive its own observation Z", cf. also
Corollary 1. This is contained in the general case by consider-
ing the structure of the source Pxy z(z,y, 2) = Pxy (z,y)Pz(2),
Pxy € P(X xY),and Pz € P(Z). In the following we show that
Csk(Pxy) is already not Banach-Mazur computable, which then
immediately implies that the general case as stated in Theorem 3 is
also not Banach-Mazur computable.

Theorem 4. For all |X| > 2 and || > 2, the forward SK capacity
CSK(R, Pxvy) is not Banach-Mazur computable and therewith also
not Turing computable.

Sketch of Proof. We prove the result for | X| = | Y| = 2. It can easily
be extended to the general case of | X'| > 2 and || > 2. The details
are omitted due to space constraints.

) 3)

First, we consider the source
and see that for this source, both Alice and Bob observe random
variables X and Y that have the same value with probability one,
ie,P{X = Y} = 1. This easily allows Alice and Bob to agree on
the same secret key error-free, i.e., P{K4 = Kp} = 1. Further no
public communication is needed at all so that no information about
the key is leaked to Eve. It follows that the forward SK capacity is
Csk(R, P.) = 1, cf. also [28].

Next, we consider another source

P.(z,y) = (%

Ni= O

RN L
Pn(mvy) = (2 #271 2n71> ) n 2 2. (4)

From (3) and (4) we get || P, — Pi|| = 5% so that limy o0 || Pn —
P.|| = 0. Assume that Csx(R, P,) is for R > 0, R € R, and
P, € P.(X x Y) Banach-Mazur computable. This implies that
every computable sequence {(Rn, P»)}nen is mapped into a com-
putable sequence {Csk (Rn, Pn)}nen, i.e., this sequence must be a
computable sequence of computable real numbers.

Let P, € Pc(X xY),n > 2. Weset R, = 0foralln € N, but
keep the sequence { P, }ren as it is. By using results of [28] one can
show that limr .o Csk (R, P,,) = 0 for all n € N. Accordingly, we
have Csk (0, P,,) = 0 for all n € N. From the beginning we further
have CSK(O, P*) =1.

Let A C N be an arbitrary recursively enumerable set such that
A is not recursive, i.e., A€ is not a recursively enumerable set. With
the definition of recursively enumerable sets, cf. Definition 4, we
can construct a total function g, i.e., domain(g) = N, such that
[9(N)] = A and g is recursive and therewith a computable func-
tion. Furthermore, without loss of generality, we can require that
g : N — Ais a one-to-one mapping from N to A.

To show that the forward SK capacity is not Banach-Mazur com-
putable, we will extend a construction of Pour-El, cf. Case I on page
336 in [29]. For every (n,m) € N x N we define the computable
function g : N X N — N as

qg(n,m) = 272 n ¢ {g(0),...,g(2™ %)}
| r ne{g(0),..g(@" ")} andg(r) = n.

Note that  above is unique. Since A is recursively enumerable, the
function q is recursive and therewith computable.

Next, we consider the double sequence {Py(n,m)}nen,men of
sources. Note that this is only a suitable variation of the sequence
{Pr }nen which is effectively computable since g is recursive func-
tion. The idea is to show that for all n € N the double sequence
{Py(n,m) Inen,men effectively converges to a sequences of sources
{Pr }nen. Then the sequence { P, }ren is a computable sequence as
well. For this purpose we have construct a suitable function ¢,, for
each n € N, for which we then show that { Py, m) }men converges
effectively to Px.

For n € A let mgo be the smallest index such that n €
{g(0), ..., g(2™°*2)} is satisfied. Now, for all m > mo we have
g(n,m) = r, i.e., we have

If we define pn (k) = mo, i.e., pn(k) is constant for n € A, we
have for the corresponding source || Py(n,m) — Pr|| = 0 < 2% for

all m > my, i.e., we have computable convergence for n € A.
For n € A® we can construct a similar construction to obtain a
computable sequence { Py, }nen of computable probability distribu-

tions with
~ P,

This implies that the sequence {Csk (0, Pr)}nen is a computable
sequence. It holds that

ifn e A°
ifne Aand g(r) = n.

Csk(0,P,)=0 & neA and Csk(0,P,)=1 < ne A"

Since Csk is assumed to be Banach-Mazur computable, the set A°¢
must be recursively enumerable so that the set A is recursive which
is a contradiction to the initial assumption that A is recursively enu-
merable but not recursive. This implies that the assumption that there
exists a Turing machine that can solve this task is wrong. This out-
lines the crucial steps. For the complete proof we refer to [17].

Remark 2. Note that the proof ideas and techniques of Theorem 4
do not carry over to the secure storage problem in Remark 1. There,
we observe a completely different behavior: the capacity function is
continuous and further allows for super activation, cf. [19].

Remark 3. The problem of identification over correlation-assisted
channels is of further interest to molecular communication. The
question of computability of the corresponding identification capac-
ity has been studied in [30].

5. RELATION TO PRIOR WORK

Secret key generation has been studied under various aspects, cf.
for example [5, 6, 8, 11-13]. However, secret key generation from
a computability or algorithmic point of view has not been studied
yet. To the best of our knowledge, the only works which study
a similar scenario are the following: In [31] the computability of
the capacity function of the wiretap channel under adversarial at-
tacks is studied and in [30] that of the identification capacity of the
correlation-assisted channel is studied. For molecular communica-
tion, secret key generation with rate-limited public discussion has
not been studied at all [18].
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