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ABSTRACT
In this paper, we present an effective convolutional neural
network (CNN) for object counting in video surveillance,
namely multi-scale density map regressor (MSDMR). In
contrast to existing CNN-based methods that achieve high
accuracy by means of empirically increasing the model ca-
pacity with more complex structures/layers, we focus on a
compact CNN. Specifically, the MSDMR is mainly designed
with the supervision of multi-scale outputs, in which two
CNN stacks estimate coarse- and fine-scale density maps,
respectively. The integral of the fine density map provides the
count of objects. The two stacks are connected in a cascaded
manner and jointly trained such that the overall model can
learn discriminative and complementary features to produce
expressive performance. Experimental results show that the
proposed MSDMR can achieve higher accuracy compared
with state-of-the-art methods on the surveillance datasets.

Index Terms— Object counting, video surveillance,
CNN, density map, multi-scale

1. INTRODUCTION

Object counting that aims to estimate the number of objects
recorded by images/videos has gained much attention in the
field of intelligent video surveillance [1]. For surveillance
cameras, the saved videos suffer from low resolution and low
frame rate because of limited network bandwidth and storage.
Moreover, the objects (e.g., people or vehicles) in the video
present large variations in the size and high occlusion since
cameras may be installed at busy road sections for capturing
much content. This brings some challenges for counting ob-
jects in video surveillance.

Recently, researchers have explored some approaches to
tackle the object counting problem, such as motion-based
methods [2], detection-based methods [3, 4], and regression-
based methods [5, 6]. Specifically, motion-based methods
count objects by tracking which fails for the videos with low
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frame rate. Detection-based methods count objects by de-
tecting its location. However, this type of methods encounter
difficulties in counting small objects, especially for surveil-
lance videos with low resolution. Regression-based methods
were proposed to learn a mapping from the low-level fea-
tures to the global count or the density map. Density map
projects the density of objects into each pixel of the image,
the intensities of which can be summed to obtain the global
count.

In this paper, we propose a compact CNN model for ob-
ject counting in video surveillance, namely multi-scale den-
sity map regressor (MSDMR). Our MSDMR (see Fig. 1) can
be decomposed into two coherent regression stages: coarse
and fine density map estimation. The coarse density map can
be considered as the prior of the fine density map. These
two stages are connected by employing the multi-task cas-
cades [7]. The proposed architecture is a hourglass structure.
The supervision of the coarse density map implemented in
the bottleneck of the hourglass structure can partially pro-
vide the blocked information for gradient back-propagation.
Moreover, this compact architecture only has about 372k pa-
rameters to be trained. The experimental results demonstrate
the outstanding performance of our light model on UCSD [5]
and TRANCOS [8] surveillance dataset.

2. RELATED WORK

This paper focuses on regression-based approaches, which
can be separated into two categories: count regression and
density map regression.

The count regression methods can map the low-level fea-
tures to the count. Based on the holistic features of motion
segments, Chan et al. [5] introduced a Gaussian Process
regression to estimate the global count of crowds. Chen et
al. [9] proposed a joint localized crowd counting by using
ridge regression in a multi-output model. Unlike global count
regression, this method counts people at different spatial
patches. In an extreme case, the count can be model at each
pixel, which can fully exploit the spatial information.

For incorporating the spatial information, the density-
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Fig. 1. Architecture of the proposed MSDMR with a cascaded structure.

map-based methods are proposed. Lempitskt and Zisserman
[10] proposed a supervised learning framework, in which the
density map estimation is modeled as a linear transformation
from each pixel in an image to the corresponding densities,
and can be defined as a minimization of a regularized risk
quadratic cost function. With recent developments in deep
learning, researchers take advantage of the CNN to learn
data-driven features and generate accurate density maps.

CNN-based density map regression: Reference [11] in-
troduced a CNN model with a switchable training scheme for
the density and count estimation. Zhang et al. [6] proposed
a multi-column CNN (MCNN) model, each column of which
can learn the features at certain scales by using different filter
sizes. Oñoro-Rubio and López-Sastre [8] elaborated a multi-
scale regression model, namely Hydra CCNN, which uses
the pyramid of image patches as the input. To understand
traffic density, Zhang et al. [12] separately exploited opti-
mization method based on rank constrained regression (OPT-
RC) and deep-learning method based on fully convolution
networks with multi-task learning (FCN-MT). By using pre-
trained VGG features and dilated convolutions, Li et al. [13]
presented a novel network for congested scene recognition
(CSRNet), which achieves the state-of-the-art performance on
the dataset with high resolution. For the UCSD [5] surveil-
lance dataset, however, it performs not well since the resolu-
tion of images is small.

3. THE PROPOSED APPROACH

In this section, we describe the proposed architecture, loss
function and ground truth generation.

3.1. The Architecture

Inspired by the cascaded CNNs in [7, 14], we propose a novel
CNN-based multi-scale density map regressor as shown in
Fig. 1, which is composed of a Feature-Shared Network and
two regressors (i.e., Coarse-Scale Network and Fine-Scale
Network).

3.1.1. Feature-Shared Network

To extract features, we design a straight-forward CNN ar-
chitecture, namely Feature-Shared Network. The Feature-
Shared Network consists of four convolutional layers each
followed by a Parametric Rectified Linear Unit (PReLU) as
the activation function, and two max-pooling layers with a
filter of size 2 × 2 and stride 2. As we use two pooling lay-
ers, the output feature maps are downsampled by a factor of
4. The output features of this network will be shared by the
following two regressors: Coarse- and Fine-Scale Networks.

3.1.2. Coarse-Scale Network

In Coarse-Scale Network, coarse density map is estimated by
taking the shared features as input. We use three convolu-
tional layers with filters of sizes 5 × 5, 5 × 5 and 1 × 1,
respectively. Each of the first two layers is followed by a
PReLU, and the last layer is followed by a ReLU to ensure
that the density map gets positive values. The output coarse
density map has 1/4 of the original input size. Furthermore,
the features of the second convolutional layer will be fed into
the subsequent Fine-Scale Network at the next stage. The
features supervised by the coarse density map can provide
rough locations and densities of objects of the image. In other
words, the Coarse-Scale Network can learn a global under-
standing of the scene.

3.1.3. Fine-Scale Network

From the output features of the Feature-Shared Network, we
set up another forward path to generate a fine-scale density
map with the same size as the input image, namely Fine-Scale
Network. First, two convolutional layers with the filter of size
5×5 are used to extract features. Then, the features of the sec-
ond layer at this stage are concatenated with features from the
earlier stage. After that, two convolutional layers with the fil-
ter of size 3×3 are exploited to fuse the concatenated features.
To generate a full-resolution density map, we design a simple
yet powerful structure: upsampling network. It consists of a
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Fig. 2. Generation of fine and coarse density map. The ob-
jects are marked as red points in the annotation map.

nearest-neighbor upsampling operation followed by a convo-
lutional layer with a 3 × 3 kernel. We use two upsampling
structures, so the feature maps are upsampled by a factor of 4.
At the end of this stage, we employ one more convolutional
layer with 1×1 kernel to generate the fine-scale density map.
Similar to the first stage, each convolutional layer is followed
by a PReLU activation function except for the last layer (with
ReLU afterward).

Remark. In contrast to the CNN model in [14] super-
vised by two tasks that belong to different domains, i.e., clas-
sification and density map regression, our model is composed
of two tasks in the same domain, i.e., regression of coarse
and fine density maps, which can facilitate feature extraction
for better performance. Besides, with the multi-scale super-
visions, our proposed architecture can avoid the bottleneck of
information in this hourglass architecture (See Section 4.2.3).

3.2. Loss function

The loss function of the entire architecture is given by:

L = Lf + λLc (1)

where Lc and Lf are the loss of the coarse- and fine-scale
density map regressor, respectively, and λ is the wight term to
control the balance between two regressors.

We use the smooth L1 loss [4] for each regressor since it
is more robust to outliers than the mean squared error (MSE)
loss. The loss functions of the two regressors are defined as:

Lc =
1

N

N∑
i=1

SmoothL1 (Fc(Xi; Θc)−Dc
i ) , (2)

Lf =
1

N

N∑
i=1

SmoothL1

(
Ff (Xi; Θf , θc)−Df

i

)
, (3)

where N is the number of training images; Xi is the ith im-
age; Dc and Df are the ground truth coarse and fine density
map, respectively; Fc and Ff are the output of Coarse- and
Fine-Scale Network, respectively; Θc and Θf are the param-
eters of Coarse- and Fine-Scale Network, respectively; θc is
the features from the second convolutional layer of Coarse-
Scale Network. Ff (X; Θf , θc) indicates that the fine den-
sity map estimation relies on the features of both Coarse- and
Fine-Scale Network.

3.3. Ground truth generation

Object counting datasets provide dot annotations to represent
the location of objects in a certain image. We firstly produce
an annotation map by setting one at the object locations and
zero at the other place. Then, the ground truth density map is
generated by blurring the annotation map with a 2D Gaussian
kernel Gσ with variance σ, where the kernel is normalized to
one. The sum of each pixel value of a density map is equal
to the count of objects. The ground truth fine density map for
the ith image can be calculated by

Df
i (x) =

Ci∑
j=1

δ(x− xj) ∗Gσ(x), (4)

where Ci is the ground truth count corresponding to the ith
image; xj is the jst object location of the ith image; the sym-
bol ’∗’ is a convolution operation. The computational process
can be seen in Fig. 2 (a).

To obtain the coarse density map, we need to resize the
fine density map with the 1/4 size. It will be generated au-
tomatically at the training stage. As shown in Fig. 2 (b) we
downsample the fine density map by a factor of 4 using one
average pooling layers with a filter of size 4× 4 and stride 4,
which is followed by a pixel-wise multiplier with a factor of
16. Due to the average pooling, the energy of the next coarse
density map is 1/16 of that of the current fine one. Therefore,
we compensate the loss of the energy by multiplying 16 to
guarantee the equal energy.

4. EXPERIMENTS

4.1. Implementation Details

Training configuration. We adopt an end-to-end training
strategy and train the architecture from scratch. We utilize
Adam optimization with the learning rate of 0.00001 to train
our model [14]. λ is set to 0.1 because we consider that the
fine density map is more important for object counting than
the coarse density map. To generate the ground truth density
map, we fix σ to 4 for the Gaussian filter.

Data augmentation. For each dataset, we randomly crop
21 patches from each image with 1/4 of the original input
size as training data. With the same augmentation techniques
as [13, 14], horizontal flipping is randomly exploited for the
training set of each dataset.

4.2. Evaluation and Analysis

4.2.1. UCSD Dataset

The UCSD dataset [5] is taken from a surveillance camera.
It contains 2000 frames, sampled by video clips with the size
of 158 × 238 and the framerate of 10. The region of inter-
est (ROI) of images is provided. For a fair comparison, we
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Table 1. Comparison on UCSD dataset.
Method MAE RMSE
Traditional approaches
Gaussian process regression [5] 2.24 7.97
Ridge regression [9] 2.25 7.82
Cumulative attribute regression [15] 2.07 7.90
Lempitskt‘s [10] 1.70 -
Deep learning-based approaches
Zhang et al. [11] 1.60 3.31
CCNN [8] 1.51 -
MCNN [6] 1.07 1.35
FCN-MT [12] 1.67 3.41
CSRNet [13] 1.16 1.47
MSDMR (ours) 1.04 1.33

Table 2. Comparison on TRANCOS dataset. ‘-’ indicates the
method does not provide the results.

Method MAE GAME (1) GAME (2) GAME (3)
CCNN [8] 10.99 13.75 16.69 19.32
FCN-MT [12] 5.31 - - -
CSRNet [13] 3.56 5.49 8.57 15.04
MSDMR (ours) 2.97 4.39 6.43 9.92

employ the same configuration with [5]. We train our model
by 601st to 1400th frames and test it by the remaining 1200
frames. According to [8, 13], we use ROI to mask the images
and density maps.

Following previous works [6, 11], we use Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE) as
the evaluation metrics. The MAE and RMSE of the proposed
method and compared methods are shown in Table 1. The
traditional global count regression methods [5, 9, 15, 10] are
inferior to deep learning-based density map estimation meth-
ods [11, 8, 6, 12, 13]. Our MSDMR obtains the best results
compared with state-of-the-art approaches.

4.2.2. TRANCOS Dataset

The TRANCOS dataset [8] is captured from traffic surveil-
lance cameras in different road sections. It comprises 1244
images, in which 823 images are used for training and 421
images are used for testing. Each vehicle is manually labeled
with a dot. The ROI is also provided for evaluation. The
Grid Average Mean Absolute Error (GAME) [8] is used as
the evaluation metric for this dataset. The GAME (L) divides
an image into 4L non-overlapping regions and calculate the
MAE of each region, and then the overall error is the sum of
all MAEs. Note that the GAME (0) is equivalent to the MAE.

Results are shown in Table 2. Our method outperforms
state-of-the-art methods for all GAMEs. Compared with
[13], the proposed MSDMR decreases the MAE, GAME (1),
GAME (2), and GAME (3) by 17%, 20%, 25%, and 34%,
respectively. Note that the low GAMEs means the proposed
method predicts the count precisely not only for the whole
image but also for the sub-regions of the image. Some visual
results predicted by the proposed method are shown in Fig. 3.

Ground truth: 24 Ground truth: 44

Estimated count: 23.15 Estimated count: 45.06

Ground truth: 52 Ground truth: 68

Estimated count: 50.74 Estimated count: 65.55

Fig. 3. Qualitative results from the UCSD (first two columns)
and TRANCOS (last two columns) dataset. The ROI is in-
side the green lines. The first row shows the input images.
The second row shows the corresponding ground truth den-
sity map and count. The third row shows the estimated den-
sity map and count of our proposed method.

Table 3. Ablation study. ‘-’ indicates the model diverges.
Dataset UCSD TRANCOS
CDM ×

√
×

√

MAE 1.17 1.04 - 2.97

Remark. Our model has a compact architecture with
0.372 million parameters compared with the CSRNet with
16.26 million parameters. Our light model can perform well
on video surveillance datasets, which is crucial for the em-
bedded application.

4.2.3. Ablation Study

Here, we investigate the effectiveness of the coarse density
map regressor on the performance. It is composed of two
settings: the MSDMR with or without the coarse density
map (CDM). The ablation study is conducted on UCSD and
TRANCOS dataset. Table 3 shows the results of two settings.
These results indicate that the coarse density map regressor
can provide extra supervision to improve the performance
and even avoid the divergence of the hourglass structure.

5. CONCLUSION

In this work, we propose a novel CNN-based multi-scale den-
sity map regressor for object counting in video surveillance.
To implement it, we design a compact architecture with the
cascaded structure. The proposed architecture first regresses
a coarse density map with low resolution, which provides
complementary features to further generate a fine density map
with high resolution. The fine density map can be integrated
to predict an accurate count. Experimental results demon-
strate the state-of-the-art performance of our method.
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