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ABSTRACT
Light field imaging is a promising technology for 3D com-
putational photography. As Light Field images are repre-
sented for multiple views, their subjective evaluation is a very
demanding task. Hence, identifying reliable objective qual-
ity assessment methodologies plays a very important role.
In this paper six objective quality metrics; PSNR-Y, PSNR-
YUV, SSIM-Y, MSSSIM-Y, FSIM-Y and HDRVDP2-Y are
assessed for five state-of-the-art codecs at various bit-rates.
Moreover, the metrics are computed in the linear, perceptu-
ally uniform and perceptual quantizer spaces. The results are
compared against those of a subjective study and is concluded
that the average FSIM-Y is the most reliable metric. The pa-
per also introduces maps of the objective metrics to evaluate
the quality dispersion among the different light field image
views.

Index Terms— Light field, image quality assessment, ob-
jective metrics.

1. INTRODUCTION

Emerging technologies can produce richer information on the
3D world. Light field image is a very promising technology
that has recently gained a greater attention with the introduc-
tion of commercial cameras by Lytro1 and Raytrix2. Post-
processing tasks like synthesizing a new view, refocusing,
and depth estimation are examples of enhanced features avail-
able with this new technology [1]. However, through light
field imaging huge amount of data are generated and efficient
compression is required [2]. The evaluation of any compres-
sion technology requires reliable quality metrics. In particu-
lar, subjective evaluation of light field images is difficult and
timely expensive because it is required to evaluate at least a
representative number of views that can be generated for each
light field image.

This work is funded by FCT through national funds and
co-funded by FEDER PT2020 partnership agreement under the project
PTDC/EEI-PRO/2849/ 2014 - POCI-01-0145-FEDER-016693, and under
the project UID/EEA/50008/2019.

1https://www.lytro.com/
2http://www.raytrix.de/

In this paper, the reliability of six objective metrics is stud-
ied for the evaluation of a set of state-of-the-art compression
methods, considering linear and perceptual spaces. Percep-
tual spaces are studied as the light field images used in this
study have a 10-bit depth, and might have a higher dynamic
range. In that case, according to [3] perceptual spaces can be
more appropriate for the metrics computation. Moreover, a
subjective study defined in [4] is used as ground truth for the
metrics validation. In this study, five state-of-the-art codecs
are subjectively evaluated. Finally, quality maps are also in-
troduced to allow the observation of the quality variation be-
tween different image views. The paper is organized as de-
scribed in the followings. Dataset, subjective tests and coding
condition are introduced in section 2. Section 3 provides de-
tails about the objective evaluation. Section 4 benchmarks
the objective metrics using the subjective results. Section 5
concludes the paper.

2. ENCODERS, DATASET, AND CODING
CONDITION

2.1. Encoders

The first two methods employ the HEVC and VP9 encoders.
In each encoder, the different light field image views (sub-
aperture images of the lenslet image) are compressed in a
pseudo-video sequence using a serpentine order for the differ-
ent views [4]. Linear Approximation Prior (LAP) [5] exploits
linearity between the sub-aperture images. For this purpose,
sub-aperture images are divided into two non-overlap sets
A and B. Sub-aperture images inside set A are arranged
as a pseudo-video and are compressed using HEVC video
encoder. Then, they are decoded and used to reconstruct
dropped sub-aperture images that exist in set B using a
global optimization strategy. In [6], sub-aperture images are
considered as a multiview sequence and the multiview exten-
sion of HEVC (MV-HEVC) is used to exploit redundancies
within sub-aperture images. In Sparse Predictive Coding
(SPC) [7], lenslet images are decomposed into non-rectified
sub-aperture images. Then, depth and geometry information
of the scene are used to find displacements of center view’s
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segments to other views.

2.2. Dataset and coding condition

Five image contents from EPFL Light-Field Image Dataset [8]
namely, I01 = Bikes, I02 = Danger de Mort, I04 =
Stone P illars Outside, I09 = Fountain & V incent 2,
and I10 = Friends 1 have been selected for the evaluation.

Each raw lenslet image has 7728× 5368 10-bit pixel res-
olution that after demosaicing and devignetting are decom-
posed into 15 × 15 sub-aperture images using the light field
toolbox V0.4 [9]. Thereafter, sub-aperture images are con-
verted to YCbCr color space using ITU-R Recommendation
BT.709-6 [10] and, then, chroma subsampling from 4:4:4 to
4:2:2 is carried out. Compression is done targeting four com-
pression ratios, R1 = 0.75, R2 = 0.1, R3 = 0.02 and
R4 = 0.005 which are calculated by dividing the volume of
the bitstream to the size of the uncompressed raw lenslet im-
age considering 13×13 central sub-aperture images. Cropped
images of central view of Bikes compressed by HEVC in
four bitrates are shown in Fig. 1.

2.3. Subjective quality assessment

A subjective test has been conducted for the above encoders
by the Multimedia Signal Processing Group (MMSPG) in
EPFL and the results have been published in [4]. In this
study, the results of 10-bit images are considered. To con-
duct this test, the set-up was defined according the ITU-R
Recommendation BT.500-13 [11]. The test conditions are
summarized in Table. 1.

To conduct the subjective test, only 97 sub-aperture im-
ages out of 169 are selected. Each participant was asked to
score each stimulus regarding to an alongside uncompressed
reference with a 7-point scale based on recommendation of
ITU-R Recommendation BT.500-13 [11]. In this way, scores
range from -3 (much worse) to +3 (much better). Training
steps and more information can be found in [4].

Table 1: Subjective test condition.

Feature Value

Bit depth 10
Display Eizo ColorEdge CG318-4K

Size of display 31.1in
Resolution of display 4096× 2160

Setup ITU-R Recommendation BT.500-13
Light adjustable neon lamps of 6500 K color temperature

Color of the background walls mid grey
Illumination level measured on the screens 15 lux
Distance of the subjects from the monitor 7 times the height of the displayed content

Monitor calibration1 sRGB Gamut
Monitor calibration2 D65 white point
Monitor calibration3 20 cd/m2 brightness
Monitor calibration4 minimum black level of 0.2 cd/m2

Methodology passive

3. OBJECTIVE QUALITY ASSESSMENT

Six full reference quality metrics were computed to assess
the performance of the state-of-the-art encoders including
PSNR Y, PSNR YUV, SSIM Y [12], MS-SSIM Y [13],
FSIM Y [14], and HDRVDP-2 Y [15]. These metrics were
computed in three spaces: Linear, perceptually uniform (PU),
and perceptual quantized (PQ). The perceptual spaces PU
and PQ are used because the images are at 10-bit depth and
according to [3] it might be more appropriate if they are
represented at a high dynamic range.

3.0.1. Linear

In the linear domain, original uncompressed and compressed
images are used to calculate the objective metrics.

3.0.2. PU

To obtain metrics in the PU domain, luminance (L) of refer-
ence and distorted images are normalized and scaled in the
PU domain using the following equation:

V (L) = pu(L)−pu(Lmin)
pu(Lmax)−pu(Lmin)

Lmin = 0, Lmax = 1023

(1)

(a) R4 (b) R3 (c) R2 (d) R1

Fig. 1: Cropped images of central view of Bikes compressed by HEVC in four bitrates.
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To obtain pu(x), pu2 encode 3 function has been used.

3.0.3. PQ

To obtain metrics in PQ domain, luminance (L) of reference
and distorted images are normalized and scaled in the PQ do-
main using the following equation [16]:

V (L) =
(

0.8359+18.8516Lp

1+18.6875Lp

)78.8438

Lp =
(

L
Lmax

)0.1593

Lmin = 0, Lmax = 1023

(2)

3.1. Performance evaluation

Objective metrics were computed for all 13×13 sub-aperture
images. To evaluate the overall performance of the compres-
sion methods, the average of the objective metrics is usually
computed. However, the variation of the objective metrics is
an important factor that must be considered for a better assess-
ment of an encoder performance. To address this, in addition
to the mean values in each compression ratio, standard devia-
tion, and the maximum and minimum of the objective metrics
values obtained for the different sub-aperture images are also
represented in the rate-distortion curves shown in Fig. 2.

For a better analysis of the diversity of the objective met-
rics for the different sub-aperture images, distortion maps per
image view can be used. These maps represent the varia-
tion of the metric between different views. As examples,
PSNRY and FSIMY maps for the content I01 at the com-
pression ratio of R2 are shown in Fig. 3. As can be seen, the
metrics reveal some fluctuation of quality between different

3https://sourceforge.net/projects/hdrvdp/files/simple metrics/1.0/

sub-aperture images, which should not happen in a reliable
encoder.

4. OBJECTIVE QUALITY METRICS
BENCHMARKING

In this section, correlation between objective metrics and sub-
jective scores are reported. The MOS values against six ob-
jective metrics are plotted in Fig. 4. To evaluate the repre-
sentation provided by the objective metrics of the subjective
evaluation, MOSp values are predicted from objective met-
rics by using a logistic function, defined as follows:

MOSp(i) = b(1) +
b(2)

1 + exp(−b(3)× (MR(i)− b(4)))
(3)

where MOSP (i) is a representation for the predicted MOS
for the ith image. b(j) are the regression parameters and
MR represents objective metric result. The initial values for
b(1) to b(4) are MOSmin, MOSmax, MRmax and MRmin,
respectively. Then, predicted MOS (MOSp) are compared
to the MOS values that are considered as ground truth. To
assess performance of the objective metrics, five measures
including Pearson correlation coefficient (PCC), Spear-
man Rank-Order Correlation Coefficient (SROCC), Kendall
Rank-Order Correlation Coefficient (KROCC), Root-Mean-
Squared Error (RMSE), and Outlier Ratio (OR) [3] were
computed. The performance of the objective metrics in all
spaces is summarized in table 2.

5. CONCLUSIONS

In this work, the performance of some objective metrics, no-
tably, PSNR-Y, PSNR-YUV, SSIM-Y, MS-SSIM-Y, FSIM-Y,
and HDRVDP-2-Y were studied. The FSIM-Y computed in
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Fig. 2: MOS and Rate-distortion curves for the PSNR-Y and FSIM-Y metrics.
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Fig. 3: Distortion maps for PSNR-Y (first row) and FSIM-Y (second row) for R2 bpp.
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Fig. 4: Objective versus subjective values in the linear space.

Table 2: Measures between MOSp and MOS values.

PCC SROCC KROCC RMSE OR
PSNR-Y 0.9514 0.9466 0.8037 0.2967 0.20
PSNR-YUV 0.9310 0.9230 0.7618 0.3523 0.23
SSIM-Y 0.9350 0.9305 0.7662 0.3419 0.22
MSSSIM-Y 0.9465 0.9384 0.7817 0.3120 0.23
FSIM-Y 0.9648 0.9520 0.8126 0.2541 0.14
HDRVDP2-Y 0.9285 0.9014 0.7329 0.3574 0.26
pu-PSNR-Y 0.9339 0.9262 0.7785 0.3494 0.20
pu-PSNR-YUV 0.9135 0.9021 0.7374 0.3983 0.24
pu-SSIM-Y 0.9325 0.9274 0.7675 0.3492 0.22
pu-MSSSIM-Y 0.9478 0.9368 0.7854 0.3086 0.20
pu-FSIM-Y 0.9529 0.9397 0.7951 0.2934 0.18
pq-PSNR-Y 0.9333 0.9258 0.7776 0.3511 0.22
pq-PSNR-YUV 0.9131 0.9022 0.7369 0.3994 0.23
pq-SSIM-Y 0.9297 0.9250 0.7679 0.3571 0.21
pq-MSSSIM-Y 0.9467 0.9369 0.7854 0.3116 0.21
pq-FSIM-Y 0.9511 0.9366 0.7886 0.2988 0.21

the linear space shows a better correlation with subjective test
results. However, the popular PSNR-Y has a very similar per-
formance and can be considered as a very reliable alternative
to FSIM-Y. In this study, none of the perceptual spaces led to

metrics with better performance than the linear space. How-
ever, this might be due to the reduced dynamic range of the
testing content.

In the assessment of the light field encoding methods, it is
important to study the variations of the objective metrics for
the different image views, in addition to the metrics’ mean
values. Hence, the standard variation was represented in the
rate distortion plots and the maximum and minimum values
of the objective metrics’ are considered as well. Moreover,
distortion maps are proposed to assess the variation of the
quality through the different light field image views. In the
subjective test of [4], as images are displayed as a sequence
some artifacts might be concealed and affect the subjective
scores. Moreover, the effect of the frame rate and refocus-
ing might also influence the subjective test outcome. New
methodologies for subjective and objective assessment that
take into consideration the quality variation between different
views of the light field image will be studied as future work.
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