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ABSTRACT

In this paper, we address the problem of ground-based hy-
perspectral image segmentation by combining pixel-level and
region-level classification with a region boundary refinement
approach. To this end, we represent the spatio-spectral fea-
ture of image regions by a descriptor based on Vector of Lo-
cally Aggregated Descriptors (VLAD). Further, the region
boundaries are refined by minimizing the total region perime-
ter. Experimental results on a ground-based hyperspectral im-
age dataset clearly demonstrate the advantage of the proposed
method over recent prior works, based on several metrics.

Index Terms— material segmentation, hyperspectral im-
ages, region texture descriptor, minimal region perimeters

1. INTRODUCTION

The classification and segmentation of materials is essential
to the understanding of the constituent substances in a scene.
This is useful in many applications. For example, in inte-
rior design, inferring the materials of objects in an image
would inform the selection of compatible materials from on-
line stores. Specific to hyperspectral images, material recog-
nition has found use in anomalous object detection from aerial
images [1], resource mapping [2] and biometrics [3].

Traditional classification methods designed for remote
sensing, such as those described in [4–7] only exploit imag-
ing spectra as the exclusive feature for recognition purposes.
This is most often due to the limited spatial resolution of
remote sensing images. The advent of ground-based hyper-
spectral sensors [8, 9] with high spatial resolution paves the
way for new ideas of exploiting the spatial information for
material classification.

A popular way of utilizing spatial information is to post-
process the result of a pixel-wise material classifier using a
region partitioning method such as partitional clustering [10],
watershed transformation [11] and minimal spanning for-
est [12, 13]. In these approaches, the pixel-wise material map
resulting from an SVM classifier is refined by majority vot-
ing, which means all pixels in a region are assigned the most

frequent label within the region. In [14], the pixel-wise mate-
rial label map is further refined by an edge-preserving filter to
reduce noise and preserve edge information with the first few
principle components as the guidance image. An alternative
approach is to impose spatial structure on pixel-wise mate-
rial maps by graph-based optimization techniques [15, 16].
In [15], spatial context provides information to refine the
pixel-wise classification by Support Vector Machines using a
Markov Random Field regularization.

On the other hand, the explicit modeling of texture is of
high relevance and importance to material segmentation. The
Bag-of-Features (BoF) method [17] characterizes texture by
the responses of pixel values to a set of filter banks. Later,
it has been demonstrated that superseding the filter responses
by the source image patches could lead to better classifica-
tion results [18]. It is worth noting that BoF only relies on the
zeroth-order information, i.e. frequency of textons, as the tex-
ture descriptor. More recently, the Vector of Locally Aggre-
gated Descriptors (VLAD) [19] was proposed to capture the
first-order information of clusters of local descriptors to repre-
sent a global image feature. At a high-level, this advancement
is a natural extension to BoF, providing richer information for
material classification.

This paper contributes the following novelties. Firstly,
we represent region-wise texture features in hyperspectral im-
agery using the VLAD encoding. Further, we propose a ma-
terial segmentation method that combines the segmentation
maps resulting from pixel-wise and region-wise classification,
followed by a segment boundary refinement step.

2. SPATIO-SPECTRAL MATERIAL
SEGMENTATION

Suppose we are given a collection ofM training pixels, where
pixel xi is assigned a material label yi belonging to a finite
set {1, . . . , C}. With the training data set {(xi, yi) : i =
1, . . . ,M}, we aim to partition a novel image into disjoint
regions R1, . . . , RK , where each region is assigned one of
the C material labels above. In other words, ∪Kk=1Rk = Ω
and Rk ∩ Rl = ∅,∀k 6= l, where Ω denotes the spatial do-
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Fig. 1: The proposed material segmentation framework.

main of an image. For the sake of simplicity, we assume that
the training and test images are sampled at the same discrete
wavelengths λj , j = 1, . . . , J . Let S(x, λ) denote the spec-
tral reflectance of an image at the pixel x and wavelength λ.
With this notation, the reflectance spectrum at a pixel x is
denoted by a vector S(x) , [S(x, λ1), . . . , S(x, λJ)]T .

As shown in Fig. 1, the proposed method consists of
two components. The top one extracts pixel-level reflectance
feature, while the bottom one extracts region-level texture
feature, producing two independent material label maps. The
two material maps are then fed into a segment boundary
refinement step by minimizing the total region perimeters.
For the first component, we adopt a pixel-wise classification
method using solely pixel reflectance spectra in [20]. Here,
we focus on describing the main contribution, which is the
region texture descriptor.

2.1. Region Classification with Texture Descriptor

2.1.1. Pixel-wise Spatio-spectral Feature
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Fig. 2: Formation of the local spatio-spectral vector at each
pixel: (a) the per-channel feature vector obtained by

reordering image values in the 3× 3 neighborhood of each
pixel. (b) the local spatio-spectral vector formed by

concatenating the per-channel feature vectors.

In our work, the local spatio-spectral vector of single pixel
is formulated using each pixel’s local neighborhood as fol-
lows. Let us consider a 3 × 3 neighbourhood around a refer-
ence pixel x. In each spectral channel λj , we formulate the
spatial feature T (x, λj) by concatenating the reflectance val-
ues S(x′, λj), where x′ is a pixel in the neighbourhood as
depicted in Fig. 2a. Subsequently, the feature vectors over
all the wavelengths λj , j = 1, . . . , J , are concatenated into a
vector T (x) ∈ R9J , representing the local texture feature in
pixel x. The process is demonstrated in Fig. 2b.

The high dimensionality, i.e. 9J , of the local spatio-
spectral vector T (x) above often poses a number of dis-
advantages such as expensive and inefficient computational
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Fig. 3: Flowchart of generating spatio-spectral textons.

load, irrelevant and noisy features. To avoid these disadvan-
tages, random projection method proposed in [21] is applied
to T (x) by a projection matrix Φ ∈ Rd×9J whose elements
are independent, zero-mean, unit-variance Gaussian random
variables. Subsequently, the texture feature T (x) is projected
into a d-dimensional space through the linear projection Φ

U(x) = ΦT (x), (1)

where U(x) is the random projection of the spatio-spectral
vector T (x) into Rd. In addition, we apply the following nor-
malization step as it was reported in [18] to lead to improved
empirical classification results.

2.1.2. Formulation of the Region Descriptor

Having obtained the randomly projected feature U(x) at each
pixel x, we proceed to obtain the representative texture fea-
ture for each region (super-pixel). To this end, we aggregate
the local spatio-spectral vectors into a VLAD descriptor per
region according to the following procedure.

In the first step, we obtain a code book of “visual words”,
which we also term as the spatio-spectral “textons”, from
the training data by k-means clustering of the above local
spatio-spectral vectors. Let us denote the N textons, i.e.
the centroids of the resulting clusters, V1, . . . , VN , where
Vn ∈ Rd,∀n = 1, . . . , N . In our experiments, the total
number of textons is N = C ×Nt, where C is the number of
classes and Nt is the texton number per class. Fig. 3 summa-
rizes the process of generating the codebook of textons.

The VLAD descriptor for each region measures the total
deviation of its local features U(x) from each centroid. By
considering the deviations from all the textons, VLAD could
effectively signify the textons representative of the local fea-
tures in each region. This first-order information is an exten-
sion from the zeroth-order information in the bag-of-visual-
words descriptor, which simply counts the occurrences of the
nearest textons in each region.

Specifically, we assign each pixel x in a given region X
to its nearest texton, in the random texture feature space, and
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denote the texton index it is associated with as

i(x) , argmin
n
‖U(x)− Vn‖. (2)

Next, we compute the total deviation vector for texton Vn
as a sum of feature differences over its associated pixels as

Fn(X ) ,
∑

x∈X :i(x)=n

(U(x)− Vn) ,∀n = 1, . . . , N. (3)

Lastly, we form the VLAD descriptor for each region X
by concatenating the above d-dimensional deviation vectors
over all the textons such that

F (X ) , [F1(X )T , . . . , FN (X )T ]T , (4)

which is a dN -dimensional vector.
Before the VLAD descriptor is fed into a region classifier,

it is l2-normalized and then projected to a low-dimensional
subspace by PCA. We employ a VLAD subspace of 80 di-
mensions in all our experiments. We summarize the above
process of generating the region texture descriptor in Fig. 4.

Using the above texture descriptor, we predict the material
class of each region in the hyperspectral image. We adopt the
majority voting approach to obtain the ground truth material
label of each region from its constituent pixels. With the re-
gion texture descriptors and region labels as inputs, we train
a region SVM classifier with the RBF kernel. As a result,
we employ the resulting classifier to predict the probability
p(c|X ) that a region X in the test set is made of the c-th ma-
terial. Subsequently, we populate the region material labels
and probabilities to its pixels x, i.e. lregion(x) = l(X ) and
pregion(c|x) = p(c|X ),∀c ∈ {1, . . . , C}.

2.2. Region Boundary Refinement

Now we further refine the segmentation maps by enforc-
ing a minimal length constraint on the segment bound-
aries. Let us ppixel(c|x) denote the material label map
obtained from pixel-wise spectrum classification (top part
of Figure 1). In addition, this map is combined with the
region-wise material map to form the label map pc(x) ,
ppixel(c|x) + pregion(c|x). Next, the boundary of the com-
bined label map is further refined by the optimization pro-
cedure presented in [20] which aims to minimize the total
perimeters of the resulting region.

3. EXPERIMENTS AND DISCUSSIONS

In this section, we evaluate the proposed approach on a hy-
perspectral image dataset introduced in [20] and compare it
to state-of-the-art methods.

3.1. Dataset

The hyperspectral images dataset are collected from five
source databases and covers diverse materials, such as cloth,
soil, vegetation, etc. and the images are grouped into four
categories, including portrait, landscape, office, and fruit &
vegetable. Every image in this dataset contains 28 bands
spanning the wavelength from 430 nm to 700 nm with 10
nm increments. Moreover, the ground truth material label is
provided for each image pixel.

3.2. Experimental settings

In the experiments, we augment the background as an addi-
tional class to the materials of interest, i.e. foreground materi-
als. We determine the training sample size based on the num-
ber of images and number of classes within each category. For
the pixel reflectance feature, we employed 100, 200, 100 and
400 training pixels per class per image for the portrait, land-
scape, office and fruit & vegetables categories, respectively.
Furthermore, for the region classifier, we sample 100, 300,
300 and 400 training regions per class per image from these
four categories and each region contains 200 to 400 pixels.

For each of the four categories, we randomly sample 75%
of the images as the training data and the other 25% as test
data. With the extracted training features, we train an SVM
classifier [22] equipped with the radial basis function kernel
to generate a material map. In addition, the set of SVM hyper-
parameters is fine-tuned for each image category via a one-
time cross-validation procedure. Furthermore, the weight α
of minimal region perimeters constraint [20] is set to 0.125 for
portraits and 0.15 for the other categories. We use the SLIC
algorithm [23] to generate the regions and the implementation
of the region VLAD descriptor in our experiments is inherited
from the VLFeat library [24].

3.3. Comparison with prior works

We compare our proposed method with five alternatives, in-
cluding Multiple Feature Learning (MFL) [25], pixel-wise
classification by SVM with Markov Random Field (SVM-
MRF) and pixel-wise classification by SVM with minimal
region perimeters (P-MRP) [20]. We also compare the pro-
posed method with two deep learning methods, including the
fully convolutional network with a VGG16 backbone [26]
(VGG16-FCN8s) and I-CNN+CRF [27], which is a shallower
version of SegNet [28].

The algorithms under study are evaluated using the fol-
lowing metrics: overall accuracy (OA), average accuracy
(AA), and mean of class-wise intersection over union (mIoU).
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Table 1: Performance of the variants of the proposed method as compared to three baseline methods on all categories.

Methods
Portrait Landscape Office Fruit & Vegetable

OA(%) AA(%) mIoU(%) OA(%) AA(%) mIoU(%) OA(%) AA(%) mIoU(%) OA(%) AA(%) mIoU(%)
MFL 79.77 71.19 40.51 73.81 56.63 33.10 54.13 45.66 26.74 91.36 85.91 75.60
SVM-MRF 88.05 79.29 53.27 79.17 62.76 40.45 63.11 54.49 33.67 94.06 92.29 81.73
P-MRP 88.15 79.64 53.78 79.42 64.21 41.00 63.11 54.94 33.66 93.41 92.76 80.65
VGG16-FCN8s 86.98 81.54 50.89 78.00 61.72 38.58 59.14 48.29 29.32 92.68 87.24 77.38
I-CNN-CRF 89.43 80.89 55.90 80.01 62.67 40.77 61.67 51.69 31.13 94.79 89.30 83.07
Ours 89.51 81.39 55.92 81.72 67.91 43.90 67.43 57.62 38.00 95.14 94.32 85.34
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Fig. 5: From top to bottom: segmentation maps for sample portrait, landscape, office, and fruit & vegetable images.

The OA is the overall percentage of correctly labeled pixels.
The AA is the average percentage of correctly labeled pixels
per class. The mIoU is defined as the ratio of the intersection
over the union of the detected pixels and the ground-truth pix-
els per class. All the reported results are taken as the average
of 10 trials of the same experiment with randomly selected
training and test sets.

In Table 1, we report the performance of our method and
the baseline ones on the four categories. Overall, the pro-
posed method outperforms the baseline ones across all four
categories and three evaluation metrics. Notably, it exhibits
an improvement approximated to 2%–4% over the baseline
methods in terms of all the evaluation metrics. Furthermore,
the proposed method can produce better performance than P-
MRP, which confirms the complementary roles of the spatial
and spectral information in representing material semantics.

Since the presented hyperspectral dataset contains limited
training data (tens of images), a deep network can easily over-
fit the training, leading to sub-optimal test accuracy. This is
evidenced by the fact that the I-CNN-CRF (shallow SegNet)
performs better than FCN-8s (deeper network) for all the cat-
egories. In addition, our method outperforms the other two
due to the exploitation of spectral information, which is not
a built-in feature of semantic segmentation methods designed

for color images.
In Fig. 5, we provide qualitative segmentation maps to

complement the above numerical results. It is obvious that
the segmentation maps generated from the proposed method
are closer to the ground truth than others. In the last image,
the left lemon is labeled as background since its material is
plastic. These figures show typical examples of the trend that
MFL usually produce small isolated segments (that appears as
salt-and-pepper noise). However, the proposed method effec-
tively removes small noisy segments and yields smooth seg-
mentation boundaries.

4. CONCLUSION

This paper presents a framework for hyperspectral material
segmentation with a spatio-spectral region texture descriptor
represented by the VLAD encoding. The method combines
results from both pixel-wise and region classification com-
ponents to produce a rough probability map at each pixel.
Subsequently, the material boundaries in this map are refined
by enforcing a minimal boundary length constraint. The ex-
perimental results on a hyperspectral image dataset show that
the proposed method significantly outperforms prior works in
several metrics, over all four image categories.
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