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ABSTRACT

This paper proposes a new medical image super-resolution
(SR) network, namely deep multi-scale network (DMSN),
in the uniform discrete curvelet transform (UDCT) domain.
DMSN is made up of a set of cascaded multi-scale fush-
ion (MSF) blocks. In each MSF block, we use convolution
kernels of different sizes to adaptively detect the local multi-
scale feature, and then local residual learning (LRL) is used
to learn effective feature from preceding MSF block and cur-
rent multi-scale features. After obtaining multi-scale features
of different MSF block, we use global feature fusion (GFF)
to jointly and adaptively learn global hierarchical features
in a holistic manner. Finally, compared with other predic-
tion methods in spatial domain, we applied DMSN in UDCT
domain, which enables a better representation of global topo-
logical structure and local texture detail of HR images. DM-
SN shows superior performance over other state-of-the-art
medical image SR methods.

Index Terms— super-resolution, deep multi-scale net-
work, uniform discrete curvelet transform, local residual
learning, global feature fusion

1. INTRODUCTION

In clinical medicine, high-resolution (HR) medical images
are visual and effective tools for physicians to make accu-
rate diagnoses. However, acquisition of HR medical images
is complicated by many factors. Low-resolution (LR) medi-
cal images will badly influence physicians’ diagnoses; thus,
super-resolution (SR) techniques for medical images [1] have
gradually become extremely crucial.

Due to the powerful learning ability, CNN-based methods
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11] are widely used to address nature
image SR tasks and have achieved impressive results. From
the first SR network SRCNN [2] to the latest RCAN [12], the
number of convolutional layer increases from 3 to 400, which
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Fig. 1: The performance of our network: the left side is the
original image. The right side is the red zone of the LR im-
age (8×), the SR image, and the original image from top to
bottom

proves that increasing the network depth can result in better
SR results. In addition, the current deep SR network is a se-
ries of identical feature extraction blocks (FEB). The ability
of each FEB to extract features plays a crucial role in the fi-
nal SR performance. Based on this consideration, this paper
proposes an efficient multi-scale fushion block to effectively
exploit features.

Due to image transform domain can reserve context and
texture information of image at different levels, image SR re-
construction in the transform domain has attracted some at-
tention. As a classic image transformation, wavelet transform
has been used for SR in natural and face images. However,
the direct extension of a wavelet to 2D by the tensor product
of two 1D wavelets is no longer optimal for representing a im-
age that has features along smooth curves. To overcome this
limitation, we use uniform discrete curvelet transform (UD-
CT) for SR in this paper, which is a real 2D image represen-
tation tool with multi-scale, multi-directional and anisotropic
features. Fig. 1 shows the performance of our network, in-
dicating the super-resolution medical images by the proposed
DMSN have abundant details.

This paper makes the following contributions: (1) The d-
ifference between natural images and medical imaging gives
rise to significant differences in textural detail and edge struc-
ture; in light of this, we constructed a database applicable to
medical image SR (SRMIdataset) to improve the learning ef-
fects of the CNN-based SR method; (2) We proposed a new
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feature extraction module, multi-scale fushion (MSF) block,
to construct our network in cascaded manner. In each MSF
block, the features of multiple receptive fields are efficiently
exploited through convolution kernels of different sizes. By
using of local residual learning (LRL) and global feature fu-
sion (GFF), our DMSN can jointly and adaptively learn hi-
erarchical features in a holistic manner. (3) Existing CNN-
based SR methods mostly concentrate on the spatial domain,
leading to over-smooth reconstruction results; therefore, UD-
CT is applied to effectively restore global topology and local
edge detail information of HR images; (4) Results showed
that DMSN is significantly better than other excellent meth-
ods in terms of peak signal-to-noise ratio (PSNR), structural
similarity (SSIM) and augmentation of texture detail and edge
structure of medical images.

2. RELATED WORK

In recent years, deep learning has aroused widespread interest
as a method for overcoming the defects of conventional shal-
low learning methods. Dong et al. [2] pioneered the appli-
cation of a CNN to image SR and unveiled a super-resolution
convolutional neural network (SRCNN), which is significant-
ly better than the output attained using conventional meth-
ods. Based on this, many CNN-based super-resolution algo-
rithms have been proposed [4, 1, 3]. The above models share
something in common—their network structures have fewer
than 10 layers. However, other network models applied to
computer vision indicate that depth of network does count in
deep learning. As a result, researchers have started to apply
deep network models to SR [13, 5, 6, 7, 8]. Recently, many
CNN-based SR methods construct the entire SR network by
concatenating a series of identical feature extraction blocks
[14, 15, 12], indicating the ability of each block plays a key
role in the SR performance of the deep network.

The above methods complete image SR in the spatial do-
main of the image but often generate overly smooth output
that loses textural details. By contrast, image SR in the trans-
form domain can preserve the image’s context and texture
information in different layers to produce better SR results.
With that in mind, Guo et al. [9] designed a deep wavelet
super-resolution (DWSR) network to acquire HR image by
predicting “missing details” of wavelet coefficients of the LR
image. Later, the same team [10] integrated discrete cosine
transformation (DCT) into CNN and put forward an orthogo-
nally regularized deep network (ORDSR). In addition, Huang
et al. [11] applied wavelet transform to CNN-based face S-
R to validate that this method can accurately capture global
topology information and local textural details of faces.
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Fig. 2: Network structure: (a) DMSN, (b) MSF block, and (c)
UDCT prediction

3. METHOD

3.1. Network Structure

Our network structure is shown in Fig. 2(a). It consists of
three parts, the shallow feature extraction module, the multi-
scale feature extraction module, and the up-sample module.
We solve the following problem:

θ̂ = argmin
θ

1

N

N∑
i=1

LSR(Fθ(ILRi ), IHRi ), (1)

where θ = {w1, w2, w3, ..., wm, b1, b2, b3, ..., bm} stands for
the weights and bias of the convolutional layer, N is the num-
ber of training samples. LSR is the loss function for minimiz-
ing the difference between ILRi and IHRi .

The most widely-used image objective optimization func-
tion is the MSE function. However, Lim et al. [16] have
demonstrated that training with MSE loss is not a good
choice. As a better alternative, the MAE loss function can be
defined as

LSR =
1

N

N∑
i=1

∥∥ILRi − IHRi
∥∥
1
. (2)

Zheng et al. [14] empirically found that their model with
MSE loss can improve performance of a trained network with
MAE loss. In order to avoid introducing unnecessary training
tricks and reduce computations, we use the L1 function.

After shallow feature module, we obtain the F0 and in-
put it into the feature extraction module, which contains a set
of cascaded MSF blocks. Here, we use global feature G by
fusing features from all the MSF blocks.

FGF = HGFF ([F1, · · · , FD]), (3)
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where [F1, · · · , FD] denotes the concatenation of feature-
maps produced by MSF blocks 1, · · · , D. HGFF is a com-
posite function of 1×1 and 3×3 convolution.

Global residual learning is then utilized to obtain the
feature-maps before conducting up-scaling by

FDF = F−1 + FGF , (4)

where F−1 represents the shallow feature-maps. All the other
layers before GFF are fully utilized with our proposed MSF
blocks. Finally, we input FDF to 17×17 deconvolution layer
to obtain the output of HR. Except for the deconvolutional
layer, the other layers are followed by ReLu.

3.2. MSF block

The proposed MSF block is shown in Fig. 2(b). In each MSF
block, we construct a three-bypass network and different by-
pass use different convolutional kernel. In this way, the infor-
mation between those bypass can be shared with each other
so that able to detect the image features at different scales.
The operation can be defined as:

C3 = σ(w1
3×3 ∗ Fd−1 + b1), (5)

C5 = σ(w1
5×5 ∗ Fd−1 + b2), (6)

C7 = σ(w1
7×7 ∗ Fd−1 + b3), (7)

H1 = σ(w2
1×1 ∗ [C3, C5] + b4), (8)

H2 = σ(w2
1×1 ∗ [C5, C7] + b5), (9)

H3 = σ(w2
1×1 ∗ [C7, C3] + b6), (10)

Fd = w3
1×1 ∗ [H1, H2, H3] + b7 + Fd−1, (11)

where w and b stand for the weights and bias, respectively.
Fd−1 and Fd are the input and output of the d-th MSF block,
respectively. σ(x) denotes the ReLU function.

3.3. Uniform Discrete Curvelet Transform

Wavelet analysis can not “optimally” represent image func-
tions with straight lines and curves. Curvelet transform is a
very effective image representation method, which improves
the processing ability of complex lines. Several discrete
curvelet and curvelet like transforms have been proposed in
the past years, which can be divided into discrete transforms
based on the fast Fourier transform (FFT), or based on filter
bank (FB) implementations. UDCT [17] is a new discrete
curvelet transform that uses the ideas of both FFT-based
discrete curvelet transform and filter-bank based contourlet
transform, which has excellent frequency response and ex-
tremely low redundancy.

As shown in Fig. 2(c), a low-frequency subband and six
high-frequency subbands of one-level UDCT are entered in
the network structure as “Input”. The seven subbands of the
SR image are as “Output”. Low-frequency subband is applied

to effectively global topology while high-frequency subbands
capture important structural information. It is worth mention-
ing that UDCT can be used in different SR networks, which
is a simple and effective way to improve the performance. S-
peaking of the role of UDCT, it is to take further experiment
in Section 4.4. The detailed process of UDCT implementa-
tion can be found in [17].

4. EXPERIMENTS

In the experiments, the performance of the proposed DMSN is
evaluated on both qualitative and quantitative aspects. PSNR
and SSIM are used for quantitative evaluation. The contrast-
ing methods selected in this part—very deep convolutional
network (VDSR) [13], deep recursive residual network (DR-
RN) [7], deep persistent memory network (MemNet) [8], and
information distillation network (IDN) [14]—are all state-of-
the-art deep learning SR methods.

4.1. Medical Image Database

Image databases of four body parts, found in The Can-
cer Imaging Archive (TCIA) [18]—breast, brain, lung and
kidney—are integrated to create a database applicable to
medical image SR. This database comprises 400 medical
images—100 images for each body part. A total of 280 medi-
cal images (70 images for each body part) compose a training
set; the remaining 120 images compose a test set.

4.2. Implementation Details

Data augmentation is performed on the 280-image training
dataset described in Section 4.1. Inspired by [7, 13], the
flipped and rotated versions of training images are considered;
specifically, we rotate the original images by 90◦, 180◦, and
270◦ and flip them horizontally. After that, for each original
image, we have seven additional augmented versions. The
training images are split into 41×41 patches, with the step of
31, by considering both the training time and storage com-
plexities. Our network contains 18 MSF blocks. The number
of feature maps used in all the convolutional layers is 64. The
learning rate in initialized to 10−4 for all layers and decreases
half for every 50 epochs. Training our model takes roughly
one day with Tesla P40 GPUs.

4.3. Evaluation of Results

In this section, we evaluate the performance of our method on
four databases (i.e., breast, brain, lung, and kidney). PSNR
and SSIM [19] are used to measure the image quality. For fair
comparison, we use the released codes of the above models
and train all models with the same training set. The PSNR and
SSIM values for comparison (scale: 4× and 8×) are shown in
Table 1; values in bold font indicate optimal values. The table
shows that when evaluated on four databases, our proposed
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Table 1: Comparison of PSNR/SSIM for different methods.

Dataset scale Bicubic VDSR DRRN MemNet IDN Ours

Breast 4 30.514/0.879 32.053/0.898 32.411/0.905 32.551/0.908 32.482/0.906 32.743/0.911
8 26.736/0.801 28.134/0.821 28.311/0.827 28.456/0.836 28.431/0.833 28.743/0.844

Brain 4 32.766/0.907 34.362/0.922 34.795/0.931 34.952/0.935 35.041/0.937 35.246/0.944
8 28.249/0.822 29.221/0.840 29.469/0.849 29.528/0.849 29.549/0.851 29.913/0.857

Lung 4 25.053/0.825 29.775/0.868 30.139/0.878 30.192/0.885 30.156/0.881 30.454/0.899
8 22.432/0.737 24.208/0.784 24.508/0.792 24.546/0.801 24.511/0.797 24.825/0.804

Kidney 4 28.369/0.848 31.754/0.899 32.146/0.906 32.231/0.914 32.210/0.911 32.518/0.921
8 24.949/0.751 26.257/0.777 26.455/0.796 26.513/0.805 26.412/0.799 26.891/0.811

Fig. 3: Qualitative results of our network. The first line is the
original images, the second line is the bicubic interpolation
images, and the third line is the SR images

DMSN obtains higher PSNR and SSIM on average than other
methods.

Fig. 3 shows the visual effects on scale 4×. The first
line in the figures is the original images, the second line is
the bicubic interpolation images, and the third line is the SR
images obtained using our network. We see that the images
reconstructed by the proposed method have abundant detail,
which are very close to the original images. We can thus con-
clude that the method proposed in this paper can be effectively
applied to medical image SR.

4.4. Effectiveness of UDCT

Given that in this paper, we introduce to predict UDCT coeffi-
cients in the field of medical image SR, we evaluate the effect
of the contribution. We use five methods (VDSR, DRRN,
Memnet, IDN, and DMSN) and integrate them with UDCT
prediction. Fig. 4(a) shows the comparison results of DM-
SN across different databases. Fig. 4(b) shows the average
comparison result of VDSR, DRRN, and IDN. From Fig. 4,
we can see both methods improve significantly when integrat-
ed with UDCT. Experimental results demonstrate that UDCT
prediction is superior to spatial domain; the improvements are
consistent across various networks and benchmarks.
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5. CONCLUSION

In this paper, a CNN-based medical image SR method is pro-
posed. Our end-to-end network DMSN contains a set of cas-
caded MSF blocks, which effectively exploit multi-scale fea-
ture to improve the SR performance. In addition, UDCT is
applied to the network structure to effectively restore missing
structural and edge information in the LR image to further
improve the SR performance. Quantitative results show that
the proposed method is much better than other state-of-the-art
methods, remarkably boosting restoration ability of textural
structure and edge details of medical images.
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