
ADAPTIVE SCENARIO DISCOVERY FOR CROWD COUNTING

Xingjiao Wu1, Yingbin Zheng2,3, Hao Ye2,3, Wenxin Hu1∗ , Jing Yang1, Liang He1

1East China Normal University, Shanghai, China
2Shanghai Advanced Research Institute, CAS 3Videt Tech.

52184506007@stu.ecnu.edu.cn, {yingbin.zheng, hao.ye}@videt.cn, wxhu@cc.ecnu.edu.cn, {jyang, lhe}@cs.ecnu.edu.cn

ABSTRACT

Crowd counting, i.e., estimation number of the pedestrian
in crowd images, is emerging as an important research prob-
lem with the public security applications. A key component
for the crowd counting systems is the construction of count-
ing models which are robust to various scenarios under facts
such as camera perspective and physical barriers. In this pa-
per, we present an adaptive scenario discovery framework for
crowd counting. The system is structured with two parallel
pathways that are trained with different sizes of the receptive
field to represent different scales and crowd densities. Af-
ter ensuring that these components are present in the proper
geometric configuration, a third branch is designed to adap-
tively recalibrate the pathway-wise responses by discovering
and modeling the dynamic scenarios implicitly. Our system is
able to represent highly variable crowd images and achieves
state-of-the-art results in two challenging benchmarks.

Index Terms— Crowd counting, adaptive scenario dis-
covery, convolutional neural network.

1. INTRODUCTION

Counting is the process of estimating the number of a partic-
ular object. With the expansion of urban population and the
convenience of modern transportation, it is common to have
large crowds in specific events or scenarios, and crowd count-
ing from images or videos becomes crucial for applications
ranging from traffic control to public safety.

Previous methods of crowd counting may be roughly di-
vided into two categories: detection-based and regression-
based. Detection-based methods have been studied with the
pedestrian detectors [1, 2]. However, it is challenging for
these methods to model a very dense crowd or crowd in a
clustered environment. The regression-based approaches are
firstly proposed in [3]. With the recent development of the
convolutional neural network (CNN), the regression frame-
work by estimation of the density maps has been widely used.
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Fig. 1. The crowd images from the ShanghaiTech dataset [5]
and their crowd counting prediction by CSRNet [8].

Compared with the system employing a single CNN regres-
sor (e.g., [4]), the networks with multiple columns/branches
learn more contextual information and achieve excellent per-
formance [5, 6, 7, 8]. Although different receptive fields are
usually applied in multiple branches, it is difficult to repre-
sent highly variable crowd images. There still exist gaps be-
tween the ground-truth and prediction for some crowd images
(some examples are shown in Fig. 1). We also observe that
the images under similar scenario seem to have the same pre-
diction pattern: the images with the lower camera viewpoints
and more backgrounds usually achieve smaller counting pre-
diction than the ground-truth (Fig. 1-Left), while these with
high viewpoint get larger predicted values (Fig. 1-Right).

The central issue addressed in this paper is the following:
Can we design a model to discover the scenarios and mod-
eling the crowd images simultaneously? One intuitive idea
is to add the number of network branch with well-designed
convolution filters. The limitations are, the CNN model will
be difficult to train with the current crowd counting datasets,
and it is also hard to directly define the scenarios. In this pa-
per, we present an adaptive scenario discovery framework for
crowd counting. Our network adopts the VGG model [9] as
the backbone and is structured with two parallel pathways that
are trained with different sizes of the receptive field to serve
different scales and crowd densities. We consider the scenario
as a linear combinational of two pathway with the discretized
weights and design a third adaption branch to learn this sce-
nario aware responses and discover the scenarios implicitly.
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Our contributions are summarized as follows.

• From the perspective of scenario discovery, a novel
adaptive framework for crowd counting is proposed.
Different from previous multiple columns/branches
frameworks, ours has the ability to represent highly
variable crowd images with two branches by incorpo-
rating the discretized pathway-wise responses.

• We apply our framework to the ShanghaiTech [5] and
UCF CC 50 [3] crowd counting datasets, and find that
it outperforms the state-of-the-art approaches.

1.1. Related Work

Numerous efforts have been devoted to the design of crowd
counting models. Detail survey of the recent progress can be
found in [10]. In this section, we mainly discuss literature on
the models with multiple branches representation, which are
more related to this work. In [5], Zhang et al. proposed the
MCNN by using three columns of convolutional neural net-
works with filters of different sizes. Sam et al. [6] proposed
the Switching-CNN, which decoupled the three columns in-
to separate CNN (each trained with a subset of the patches),
and a density selector is designed to utilize the structural and
functional differences. Several works have studied the con-
text information of the crowd images under multiple branch
setting. For instance, Sindagi et al. [7] applied local and glob-
al context coding to population count density estimation, and
Zhang et al. [11] proposed a scale-adaptive CNN architecture
with a backbone of fixed small receptive fields. Another work
related to ours is the CSRNet [8], where convolutional neu-
ral networks with dilation operations were employed after the
backbone of the pre-trained deep model.

These existing approaches construct density estimation
models with multiple branches to represent different recep-
tive fields or scales. Our framework also follows the general
process, with the design of one branch representing the dense
prediction and another for the relative sparse crowds. How-
ever, instead of using the fix branch weights or selecting one
explicitly column, we adopt the learning of branch weights.
Responses of the dense and sparse pathways are adaptive-
ly recalibrated by a third branch, which explicitly models
interdependencies between pathways. Moreover, with the
discretization of these pathway-wise responses, the crowd
scenarios are implicitly discovered and respond to differen-
t crowd images in a highly scenario-specific manner. The
whole framework can be end-to-end trained, and as will be
shown in the experiments, it is more accurate compared to
previous approaches.

2. FRAMEWORK

The overall architecture of our framework is illustrated in Fig.
2. We start by introducing the design of adaptive scenario dis-
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Fig. 2. Network structure of proposed framework. DC, M-
P, GAP, and FC indicate deconvolution layer, max pooling,
global average pooling, and full-connected layer respectively.

covery, followed by implementation details of the framework.

2.1. Adaptive Scenario Discovery

The selection of a suitable network structure is important to
the success of a crowd counting system. There are generally
two categories of networks: either it is with a new design of
the structure and learned from scratch (e.g., [5, 12]), or the
model is transferred from part of a pre-trained network (e.g.,
[8, 13]). In this paper, our framework belongs to the sec-
ond case, by employing the convolutional layers of a VGG-
16 model [9] pre-trained from the ImageNet dataset [14] and
fine-tuned with the crowd images. We choose this strategy for
the outstanding performance of the model in crowd counting
as well as other computer vision tasks, and the results in the
evaluation also confirm the effects of the pre-trained model.

Our counting network consists of two parallel pathways
after the backbone module. The first pathway starts with a
deconvolution layer that amplifies the inputs, and then a few
convolutional layers with larger receptive fields are used, fol-
lowed by a 2 × 2 max pooling. This pathway is designed to
model the high congested scenario with dense crowd, and the
second pathway is for the sparse scenario. The convolution
filers in this subnet are with a size of 3 × 3. Note that the
concept of dense or sparse is relative and both pathways can
output a density map.

There are several approaches to fuse the density maps, and
here we would like to use a dynamic weighting strategy. In-
spired by the excitation operation in SENet [15], we propose
the adaption branch. The outputs of the last convolutional
layer in the backbone go through a global average pooling and
two fully-connected layers and then have an initial response
w. We expect w to adaptively recalibrate the weight of the
dense and sparse pathways, therefore we normalize it into the
interval of [0,1) with the following formula:

w∗ = arctan(sigmod(w))× 2

π
(1)

Experiments on Section 3.2 will show the effect compared
with the single branch or average fusion. However, we find
that the convergence speed of this architecture is slow, proba-
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bly due to the small size of the crowd counting dataset but the
continuous response.

Our solution is to divide the response value into bins, by
borrowing the idea from traditional visual features such as
color histogram [16], SIFT [17], and HoG [18]. The bene-
fits of discretization are two-folder. First, the model itself is
easier to train and converge. Second, similar attributes are
significantly observed from the images within the same bin
(see Fig. 5), indicating that discretization operation is able to
implicitly discovering the dynamic scenarios.

2.2. Implementation Details

Ground Truth Generation. We follow [8] to generate the
density maps from ground truth. the density map F (x) is
generated with the formula:

F (x) =

N∑
i=1

δ(x− xi)×Gσi
(x) (2)

where xi is a targeted object in the ground truth δ and Gσi
(·)

is a Gaussian kernel with standard deviation of σi. For
the datasets with high congested scene (such as Shang-
haiTech Part A [5] and UCF CC 50 [3]), F (x) is defined
as a geometry-adaptive kernel with σi = βd̄i. Here d̄i is the
average distance of k nearest neighbors of targeted object xi.
For low congested scene (i.e., ShanghaiTech Part B [5]), we
set σi = 15.

Training Details. We define the loss function as follows:

L(Θ) = 1
2N

N∑
i=1

‖F(Xi; Θ)− F (Xi)‖22 (3)

where F (Xi) is the ground truth density map of image Xi

from Equ. (2) and F(Xi; Θ) is the estimated density map of
Xi with the parameters Θ learned by the proposed network.

To ensure the spatial feature and the context of the crowd
images, we do not extract the image patches for data augmen-
tation. And there is also no additional image copy/conversion
enhancement. During training, we employ the stochastic gra-
dient descent (SGD) for its good generalization ability.

3. EVALUATIONS

We conduct the experiments on the ShanghaiTech dataset [5]
and the UCF CC 50 dataset [3]. The ShanghaiTech dataset [5]
is divided into Part A and Part B. ShanghaiTech Part A con-
tains 482 crowd images with 300 training images and 182
testing images, and the average number of the pedestrian is
501. ShanghaiTech Part B is with 716 images (400 training
and 316 testing). The resolution of the images are fixed with
768 × 1024 pixels, and the pedestrian number is generally
smaller than Part A with an average number of 123. The
UCF CC 50 dataset [3] contains 50 images with high crowd

Table 1. Comparison with the state-of-the-arts on the bench-
marks. Part A and Part B indicate ShanghaiTech Part A and
Part B, respectively.

Method
Part A Part B UCF CC 50

MAE MSE MAE MSE MAE MSE
Zhang et al. [19] 181.8 277.7 32.0 49.8 467.0 498.5
MCNN [5] 110.2 173.2 26.4 41.3 377.6 509.1
Cascaded-MTL [20] 101.3 152.4 20.0 31.1 322.8 397.9
Switching-CNN [6] 90.4 135.0 21.6 33.4 318.1 439.2
DAN [21] 88.5 147.6 17.6 26.8 234.5 289.6
CP-CNN [7] 73.6 106.4 20.1 30.1 295.8 320.9
Huang et al. [22] - - 20.2 35.6 409.5 563.7
D-ConvNet [13] 73.5 112.3 18.7 26.0 288.4 404.7
ACSCP [12] 75.7 102.7 17.2 27.4 291.0 404.6
DecideNet [23] - - 20.8 29.4 - -
SaCNN [11] 86.8 139.2 16.2 25.8 314.9 424.8
CSRNet [8] 68.2 115.0 10.6 16.0 266.1 397.5
ASD [ours] 65.6 98.0 8.5 13.7 196.2 270.9

density. The images vary in the number of pedestrians, with
a range of 94 to 4,543. For both datasets, we follow the stan-
dard experimental protocols, and mean absolute error (MAE)
and mean squared error (MSE) is reported as the evaluation
metric. We implement our framework based on PyTorch [24].

3.1. Results and Comparison

We first evaluate the overall results of our proposed frame-
work. We compare our framework with several state-of-the-
art approaches, including the multi-column CNN with dif-
ferent receptive fields [5], the Switching-CNN that leverages
variation of crowd density [6], and a very recent dilated con-
volution based model CSRNet [8]. The number of grouped
scenario is 15, and the effect of the parameters will be evalu-
ated in the next subsection. We denote our approach as ASD
(Adaptive Scenario Discovery) in the following comparisons.

ShanghaiTech. Table 1 summarizes the MAE and MSE of
previous approaches and ours in the datasets. On Part A of
ShanghaiTech, we achieve a significant overall improvement
of 24.8 of absolute MAE value over Switching-CNN [6] and
2.6 of MAE over the state-of-the-art CSRNet [8]. On Part
B, our ASD framework also achieves the best MAE 8.5 and
MSE 13.7 compared to the state-of-the-art. Fig. 3(a) and (b)
illustrate the density maps and the prediction results of some
crowd images from both parts respectively.

UCF CC 50. We now report results on the UCF CC 50
dataset, as summarized in Table 1 and shown in Fig. 3(c).
Similar to the experiments on ShanghaiTech, the ASD frame-
work shows better results than the other approaches, and we
improve on the previously reported state-of-the-art results by
26.3% for the MAE metric and 31.8% for the MSE, which
indicates the low variance of our prediction across the high
crowd density images.
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(a) ShanghaiTech Part A

(b) ShanghaiTech Part B

(c) UCF CC 50

Fig. 3. Qualitative results on the benchmarks.

3.2. Ablation Study

In this part, we evaluate a few parameters and an alternative
implementation for the proposed framework. We report re-
sults on the ShanghaiTech Part A.

Network Architecture. We first evaluate the effect of the t-
wo parallel pathways over the whole framework. Fig. 4-Left
gives the comparison with different network architecture, in-
cluding the single pathway and the fusion of them. With the
fusion of a fixed pathway weight, the result is 74.1 of MAE
and 114.0 of MSE, which is not higher than results by the
single pathway. We observe significant performance gain-
s when adding the dynamic pathway-wise responses and the
discretization.

The Effect of Scenario Discovery. Recall that the discretiza-
tion on the adaption branch is applied to discover the dynamic
scenarios implicitly; here we consider the different choice of
parameters. The output response after the operation of Equ.
(1) fall in the interval (0,1), and is divided into 2,10,100, and
1000 bins. Note that only a proportion of bins are with im-
ages after model training due to the size of the dataset, there-
fore the number of scenarios is usually smaller than that of the
bin. Discretization with 2 bins can be considered as a simpli-
fied version of Switching-CNN [6], and our learning strategy

2,2 10,7 100,15 1000,81 None

MAE MSE

60

75

90

105

120

a. b. c. d. e.

Fig. 4. Left: the effect of varying network architecture, a. s-
parse pathway only; b. dense pathway only; c. fusion of the
two pathways with the same weight; d. learned weight with-
out discretization; e. proposed approach. Right: the effect
of scenario discovery w.r.t the number of discretization bin-
s and grouped scenarios (“None” indicates the result without
discretization).

Fig. 5. Images of four sample scenarios grouped by adaptive
scenario discovery. A various of differences between each
two scenarios, such as crowd density, ratio of background,
and viewpoints, can be visibly from the images.

still achieves lower MAE (74.4 vs. 90.4). Without the dis-
cretization, we obtain the MAE of 69.4, which is not as good
as the scenario discovery with 15 and 81 scenarios (MAE of
65.6 and 68.7, respectively). Fig. 5 shows some crowd im-
ages from different scenarios.

4. CONCLUSIONS

In this paper, we have presented a novel architecture for high-
density population counting. Our approach focuses on the
implicit discovery and dynamic modeling of scenarios. In
addition, we have reformulated the crowd counting problem
as a scenario classification problem such that the semantic s-
cenario models into a combined prediction sub-tasks. The
adaptive scenario discovery is built to obtain two weights of
different sizes through the parallel perception path for dynam-
ic fusion. Our proposed framework achieves state-of-the-art
performance on two popular crowd counting datasets.
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