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ABSTRACT

In visual speech animation, lip motion accuracy is of paramount
importance for speech intelligibility, especially for the hard of
hearing or foreign language learners. We present an approach
for visual speech animation that uses tracked lip motion in
front-view 2D videos of a real speaker to drive the lip motion
of a synthetic 3D head. This makes use of a 3D morphable
model (3DMM), built using 3D synthetic head poses, with
corresponding landmarks identified in the 2D videos and the
3DMM. We show that using a wider range of synthetic head
poses for different phoneme intensities to create a 3DMM, as
well as a combination of front and side photographs of the
real speakers rather than just front photographs to produce
initial neutral 3D synthetic head poses, gives better animation
results when compared to ground truth data consisting of
front-view 2D videos of real speakers.

Index Terms— visual speech animation, lip motion, 3D
morphable model.

1. INTRODUCTION

Humans notice any slight flaws in visual speech animation.
This increases the focus on creating realistic mouth animation
that is synchronized with a real speaker’s utterance. Various
approaches to visual speech animation have been proposed,
which can be broadly classified into two categories: viseme-
driven approaches and data-driven approaches. Viseme-
driven approaches involve segmenting speech into phonemes,
which are then classified into visual units called visemes,
which are poses matched to the main visual appearance of the
phoneme, e.g. a closed mouth shape for a bilabial phoneme
such as /m/ [1]. Viseme parameters are then interpolated
with co-articulation rules incorporated [2, 3]. Data driven
approaches involve motion capturing data (video or 3D) from
a real speaker to produce a synthesized talking head [4, 5] or
to reanimate faces in images and videos [6, 7, 8]. The cap-
tured data is either organised based on phonetic information
(sample-based approaches) [9], or processed using statistical
models to control the facial motion that is learned from the
training data (learning-based approaches) [10, 11, 12, 13, 14].
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In this paper we present a data driven approach to fit a 3D
morphable model (3DMM) [15] to images and video streams.
We use a 3DMM that is based on 3D synthetic head poses
generated using commercial software (FaceGen1) to train the
model, rather than 3D scans of real speakers. The FaceGen
models have corresponding vertex data in each head, making
model training easier. In order to generate the neutral head
pose for a face, photographs of a real speaker are used. Our
3DMM is fitted to 2D video of a real speaker (from [16]) us-
ing the method in Huber et al’s work [17], which involves
reconstructing 3D faces from images using a 3DMM.

We conducted a series of experiments to investigate how
using different amounts of data in different stages of the pro-
cess influences the final animation results. We show that us-
ing different versions of visemes for a phoneme, showing dif-
ferent strengths of viseme shape (e.g. different amounts of
mouth openness for the same viseme), when constructing the
3DMM, gives better results in the final animation. We also
show that using both a front- and side-view photograph in the
initial 3D head construction further improves the final anima-
tion results. We use ground-truth data (the front-view videos
of a speaker [16]) to compare the final synthetic 3D animation
results against.

The rest of the paper is structured as follows. Section
2 describes the 3DMM and presents the approach to fit the
3DMM to 2D video. Section 3 describes the experiments and
the results. Finally, Section 4 concludes the paper.

2. METHODS

Two separate steps can be identified: the construction of a
3DMM and the mapping of 2D video data to a 3D synthetic
head.

2.1. A 3DMM

A 3DMM requires a set of head poses for training. These are
often generated by taking scans of real people. Instead, we
use FaceGen to produce synthetic head poses. An initial neu-
tral head pose can be generated using photographs of a real
person, either a front-view only photograph or front and side

1https://facegen.com
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views. The software can then be used to deform the face into
a range of poses. The software includes 16 default viseme
poses, which are parameterised so that different intensities of
each viseme can be generated, i.e. different amounts of open-
ness for an open-mouthed viseme. We make use of this func-
tionality in generating our datasets (see Section 3). Each head
pose created using FaceGen automatically has vertex corre-
spondence, something which is more complex to achieve with
scanned data. FaceGen also generates tongue and teeth poses,
but we exclude this since we are concentrating on lip shape.

Given a set of head poses, Principal Component Analysis
(PCA) can be applied to the vertices to generate a 3DMM.
Only shape needs to be considered, since every head pose
shares the same texture. The geometry of the head is repre-
sented by a shape vector S = (X1, Y1, Z1, . . . , Xn, Yn, Zn)

>,
containing the X , Y , Z coordinates of the vertices, where n
is the number of FaceGen poses used to build the 3DMM.
The 3DMM consists of a PCA model of the shape, which is
represented as:

M := {F , σ, V } (1)

where F ∈ R3N is the mean vector of the example meshes
(mean pose) with N being the number of mesh vertices,
and σ ∈ Rn−1 denotes the standard deviation, where V =
[v1, . . . , vn−1] ∈ R3N×n−1 is a set of principal components
in the model.

A new pose can be generated as follows:

S = F +

K∑
i=1

αiσivi (2)

where K ≤ n− 1 is the number of principal components and
αi ∈ RK is the shape coefficient [17].

2.2. Mapping 2D to 3D

To generate the 3D animation, 2D video of a speaker needs
to be mapped to the 3DMM. This is achieved using the cam-
era matrix method presented by Huber et al [17]. This sec-
tion briefly explains the 2D facial landmarks tracking process
and how the pose of the 3DMM is estimated and fitted to the
mouth shape of a real speaker.

In order to track the facial features of a real speaker in a
video, the random cascaded-regression copse (R-CR-C) ap-
proach presented by Feng et al [18] is used, which regresses a
set of facial feature landmarks to fit a predictive shape model
to the true shape. Based on that, when a video is run, a learned
landmark detection model using the Ibug-Helen test set [19]
will detect and track the facial features of the real speaker.

Given 51 2D landmarks and the corresponding 3D land-
marks a pose of the face is estimated using the Gold Stan-
dard Algorithm (more details in [17]). It computes the cam-
era matrix that is used to reconstruct the 3D shape. Figure
1 shows the facial landmarks labelled on a video frame of a
real speaker (left) and on the corresponding 3D head model

Fig. 1: The facial landmark points labelled on a real speaker
(left) and the corresponding 3D head model (right).

(right) that correspond to a set of Ibug2 facial landmarks (the
contour landmarks were excluded).

The most likely vector of PCA shape coefficients, α, is
found by minimising the following cost function:

E =

3L∑
i=1

(y3D,i − y2D,i)
2

2σ2
2D

+ ‖α‖22 (3)

where L is the number of landmarks, y2D,i is the 2D land-
marks represented in homogeneous coordinates, σ2

2D is an ad
hoc variance of these landmarks, and y3D,i is the projected
3D landmarks to a 2D plane using the camera matrix [17].

3. EXPERIMENTS AND RESULTS

The experiments address two main questions: (i) would using
different intensities of the same viseme shape (e.g. different
amounts of mouth openness for the same viseme) when con-
structing the 3DMM produce better animation results? (ii)
would using both front- and side-view photographs, rather
than just a front-view photograph, in the construction of the
initial 3D head pose produce better animation results?

3.1. Data sets

Four data sets were used to build different 3DMMs for a
speaker. Table 1 summarises the data sets. The differentiating
factors are whether 17 (16 visemes and a neutral pose) or
161 poses (10 intensity variations of 16 visemes and a neutral
pose) are used for a 3DMM and whether a front-view photo
only or front- and side-view photos are used in constructing
the neutral head pose. Figure 2 shows the front and side pho-
tographs of a real speaker (ID: S32) and the corresponding 3D
heads that were generated using a front-view photograph only
(left), and front- and side-view photographs (right). Each of
the data sets was used in producing a 3DMM, which was
subsequently used in the process described in Section 2.

2https://ibug.doc.ic.ac.uk/resources/facial-point-annotations
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Data
set

17
poses

161
poses

front-view
photo

front- and side-
view photo

1 y y
2 y y
3 y y
4 y y

Table 1: The data sets

Fig. 2: First row: Front (left) and side (right) photographs of
a real speaker (ID: S32); Second row: front and side view of
the corresponding 3D heads generated using front photograph
only (left) and front and side photographs (right) – the lips are
more protruded in the image on the right.

3.2. Evaluation

In order to validate the process, videos of four female speak-
ers (IDs: S15, S17, S24 and S32) and two male speakers (IDs:
S20 and S48) from the Audiovisual Lombard Grid Speech
corpus [16] were used. The corpus consists of both front- and
side-view video of 54 speakers (30 female and 24 male) ut-
tering sentences from the GRID corpus [20] in both plain and
Lombard conditions. We used only the front-view videos of
plain sentences.

For each real speaker, four plain sentences from the front-
view video files were chosen to be mapped to each corre-
sponding 3D synthetic head (built using FaceGen). The re-
sulting 3D head animation was then compared to the origi-
nal ground-truth 2D videos. This was done for each of the
3DMMs built for the 4 data sets summarised in Table 1.

For the comparison, Faceware Analyser3 was used to
track the facial features in the ground-truth 2D video and the
front-view (2D) of the corresponding 3D animation. Two ge-
ometric articulatory measurements were calculated from the
extracted facial features. The first was a width measurement
defined by the horizontal distance between the right and left
inner corners of the lips. The second was a height measure-
ment defined by the distance between the top and the bottom
middle of the inner mouth contour. In order to correct for

3http://facewaretech.com/products/software/analyzer

the distance between the camera and the real speaker or the
talking 3D head, all the landmarks were normalised by using
the Euclidean distance between the midpoint of the inner cor-
ners of the eyes and the nose tip’s point, since these were not
affected by the articulations. All visual articulatory features
for the real speakers and their corresponding 3D heads were
normalised by their corresponding maximum and minimum
mouth measurements in the videos. This gives all the articu-
latory measurements on a [0-1] scale. Given the height and
width values for each frame of animation, for both the real
video for a speaker and the corresponding 3D animation, the
root mean square error (RMSE) over a sentence was used to
evaluate the effectiveness of each 3DMM.

3.3. Results and Discussion

Figure 3 shows an example of consecutive frames of the
phoneme /w/ during utterance of the letter y for a real speaker
(ID: S17) and the corresponding 3D head for each data set.
This figure shows that the performance of the animated 3D
lips improves when a larger number of 3D head poses (i.e.
different viseme intensities) are used to train the 3DMM, and
further improves when front- and side-view photos are used
to generate the initial neutral head pose in FaceGen.

Real speaker

Using data set 1:
17 poses,
front-view photo

Using data set 2:
161 poses,
front-view photo

Using data set 3:
17 poses, front-
and side-view photos

Using data set 4:
161 poses, front-
and side-view photos

Fig. 3: Video frames of a real speaker (ID: S17) and the 3D
head produced for each data set.

Figure 4 shows the trajectories of the width and the height
parameters for the same speaker (ID: S17) and the corre-
sponding 3D heads whilst uttering the sentence “place green
in y zero again”. Whilst all the trajectories generated using
the animation pipeline generally follow the real speaker’s tra-
jectory, the trajectories of the 3D heads that contain 161 poses
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ID
Front photo Front+side photo

17 poses 161 poses 17 poses 161 poses
W H W H W H W H

S15 0.152 0.120 0.154 0.117 0.129 0.102 0.131 0.087
S17 0.121 0.137 0.115 0.128 0.120 0.109 0.092 0.095
S20 0.239 0.166 0.247 0.158 0.229 0.156 0.244 0.155
S24 0.287 0.141 0.223 0.151 0.260 0.142 0.219 0.123
S32 0.117 0.067 0.115 0.075 0.210 0.067 0.111 0.056
S48 0.199 0.086 0.175 0.080 0.203 0.075 0.149 0.071

Table 2: The RMS error averaged over 4 sentences for width
(W) and height (H) of the mouth of the real speakers and their
corresponding 3D heads. Values in bold means the decreased
RMS error. Width and height error=±0.001.

and which are generated using front- and side-view photos
(i.e. data set 4) are much closer to the ground truth trajec-
tory. Thus, using different intensities of viseme data in the
construction of the 3DMM, as well as one extra photograph
in the construction of the 3D head, improves the performance
of the resulting 3D lip motions.

Table 2 shows the RMSE results averaged over 4 sen-
tences for width and height of the mouth of the real speakers
and their corresponding 3D heads. The 3DMMs that contain
161 poses and which are generated using both front- and side-
view photographs give the lowest RMSE scores for height for
all the speakers and width for four out of six of the speakers.
For the 3D heads that contain 161 poses, a t-test suggests a
significant difference in RMSE results for the 3D heads that
use front- and side-view photos versus front-view photos only
(p=0.0292 for width and p=0.0009 for height). Also, there is
a significant difference for height between the 3D heads con-
taining 161 poses and 17 poses that are generated using front-
and side-view photos (p=0.0135), although there is no signif-
icant difference for the width (p=0.0967).

4. CONCLUSIONS AND FUTURE WORK

This paper has presented a 3D talking head based on fitting a
3DMM, created using synthetic data, to 2D video frames of a
real speaker. The experiments show that increasing the num-
ber of 3D head poses (different viseme intensities) to train
the 3DMM improves the performance of the 3D lip motions.
In addition, using both a front- and side-view photo in the
construction of the neutral pose 3D head further improves the
results in comparison to just using the front-view photo. Fu-
ture evaluation work will make use of side-view videos (from
[16]) and a subjective evaluation of the resulting animation
will also be conducted.

Fig. 4: Width and height of mouth trajectories of 2D frames
of the real speaker (ID:S17) and the corresponding 3D heads.
Top two compare height and width between 17 and 161 poses
(both with front- and side-view photos), while the bottom two
compare height and width between front- view photo only and
front- and side-view photos (both with 161 poses).
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