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ABSTRACT
To tackle three main problems in depth map super resolu-
tion (SR) process, which are texture copy artifacts, blurred
edge artifacts and jagged edge artifacts, we propose a depth
map super resolution with denoising method based on multi-
scale directional fusion via nonsubsampled contourlet trans-
form (NCST). We first transform low resolution depth maps
of multiple views via NSCT. Then NSCT coefficients are de-
noised by a BayesShrink threshold in nonsubsampled direc-
tional filter banks (NSDFB) domain and fused by the max co-
efficient absolute value (mCAV) rule respectively within each
scale and direction. Finally the fused coefficients are synthe-
sized and upscaled to a high resolution depth map utilizing a
modified edge-guided joint bilateral filter. Experimental re-
sults demonstrate that our method significantly outperforms
the state-of-the-art super resolution algorithms quantitatively
and visually while mitigating the corrupted noise.

Index Terms— nonsubsampled contourlet transform,
BayesShrink threshold, fusion, depth map super resolution

1. INTRODUCTION

Recent years, the rapid advancement of 3D applications, such
as freeview TV, robot navigation and 3D object tracking have
been witnessed. Many 3D applications require that depth map
has the same resolution as the corresponding color map. Due
to the limited capacity of the existing range sensors such as
Microsoft Kinect and Time of Flight (ToF) cameras, generat-
ed depth maps are usually with low resolution (LR).

To enhance the resolution of depth maps, many depth map
super resolution algorithms are proposed, among which t-
wo main categories are utilized to upsample the depth maps
generally. One category is single depth map SR methods et
al. [1–6]. They obtain the high resolution (HR) depth map
with the initial LR depth map or the corresponding guided
high resolution color map of the same view. For example,
Ham et al. [3] propose a SR method which jointly leverages
structural information of guidance and input depth maps. U-
tilizing the edges of the low-resolution depth image through

a Markov Random Fields optimization in a patch synthesis
based manner, Xie et al. [6] construct a high resolution edge
map to guide the upscaling of the depth map.

The other category is multiple depth map SR method-
s [7–10], which enhance the resolution of the target depth map
utilizing the fusion results of multiple low resolution depth
maps of different views at the same time or same view at d-
ifferent time. Choi et al. [9] propose a novel depth map SR
framework by taking interview coherence into account. Re-
cently, Lei et al. [10] proposed a credibility based multiview
depth maps fusion strategy, which takes the view synthesis
quality and interview correlation into account, and gain a re-
markable performance.

For single depth map SR methods, they may produce tex-
ture copy artifacts and blurred edge artifacts when the col-
or discontinuities and the depth discontinuities at the corre-
sponding location are not consistent. To tackle these problem,
multiple depth map SR methods are applied. By fusing the
depth maps of different views or times, more contour and oc-
clusion information can be obtained which will be used sub-
sequently in the SR process. Considering the characteristics
of clear edges with no much texture in depth map, preserving
more contour information is the key to the depth map super
resolution. Multiple depth map SR methods are performed
in spatial domain, which only take local pixels into account
rather than global contour structure. Inspired by the success
of the image fusion in transform domain of multi-view [11]
and multi-focus [12,13] which can obtain more high frequen-
cy details, we propose to fuse the LR depth maps in transfor-
m domain via multiscale nonsubsampled contourlet transform
(NSCT) for depth map SR.

In addition, depth maps captured from the existing range
sensors are usually degraded by both internal and external
noise. The internal noise is caused by some factors of sen-
sor itself, such as photon shot noise and thermal noise. The
external noise is caused by some environment factors, such
as strong illumination, occlusion, and high reflectivity sur-
faces. Among these noises, photon shot noise is the most
significant factor which impacts the intensity of noise. In ac-
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Fig. 1: The flowchart of the multiscale directional fusion for depth map super resolution with denoising model.

tual capture scene, photon shot noise is theoretically Poisson
distributed [14], but it can be sufficiently approximated to a
Gaussian distribution proved by Frank et al. [15]. With the
corrupted noise, depth map cannot reflect the accurate depth
value of the scene. Especially in 3D reconstruction proce-
dure, noise along surfaces in 3D scenario is more obvious to
cause observers’ attention. Unfortunately, depth map noise
does not cause much attention. Only a few literatures [16–18]
take bilateral filter as a pre-processing treatment to simply re-
fine the incorrect values of the depth map. However, bilateral
filter is not a satisfying denoising filter specific to actual noise
distribution. Our method uses a BayesShrink threshold mod-
el with the assumption that the corrupted noise conform to a
Gaussian distribution, markedly alleviating the depth noise.

In this paper, we propose a depth map super resolution
with denoising method based on multiscale directional fu-
sion via NSCT. We first transform LR depth maps of mul-
tiple views in NSCT domain [19]. Then NSCT coefficients
are denoised by a BayesShrink threshold in NSDFB domain
and fused by mCAV rule respectively within each scale and
direction. Finally the fused coefficients are synthesized and
upscaled to the target high resolution depth map utilizing a
promoted edge-guided joint bilateral upsampling (JBU).

2. FRAMEWORK OF MULTISCALE DIRECTIONAL
FUSION BASED DEPTH MAP SUPER RESOLUTION

WITH DENOISING

As illustrated in Fig. 1, the multiple LR depth maps {DLR
1 ,

DLR
2 , . . . , DLR

i , . . . , DLR
N } of different views are input and

transformed into NSCT coefficients {Ψ1, Ψ2, . . . , Ψi, . . . , ΨN}.
Parameter N refers to the number of view points. Then
{Ψ1, Ψ2, . . . , Ψi, . . . , ΨN} is denoised by the BayesShrink
threshold denoising method to obtain the purified coefficients
{ψ̂1, ψ̂2, . . . , ψ̂i, . . . , ψ̂N} . The fused coefficients ψ̃i of view
i are get by fusing the denoised NSCT coefficients of multiple
depth maps via the max Coefficient Absolute Value (mCAV)
rule which will be introduced in the following part. The fused
LR depth map D̃LR

i is acquired through the inverse NSCT of

ψ̂i. The final HR depth map DHR
i is a result upscaling D̃LR

i

by edge-guided JBU with the guidance of IHRi which is the
HR color image of view i.

3. MULTISCALE DIRECTIONAL FUSION FOR
DEPTH MAP SUPER RESOLUTION WITH

DENOISING

3.1. Depth map transform by NSCT

In this section we give an introduction of depth map trans-
form by nonsubsampled contourlet transform (NSCT). NSCT
consists of two parts: nonsubsampled pyramid structure (N-
SP) and nonsubsampled directional filter banks (NSDFB). N-
SP filters the image into low-frequency subbands and high-
frequency subbands. NSDFB transforms the 2-D frequency
plain into directional subbands. Nonsubsampled pyramids
(NSP) are constructed by iterated two-channel nonsubsam-
pled 2-D filter banks

Hφ(z) =

(
H1

�
z2
φ−1
�Qφ−2

j=0 H0

�
zφ
�
, 1 ≤ φ < 2JQφ−1

j=0 H1

�
z2
φ
�
, φ = 2J

(1)
where z = [z1, z2]T . They achieve a subband decomposition
by low-pass filter H0 and high-pass filter H1(z) = 1−H0(z)
[20]. NSDFB is a shift-invariant extension of contourlet trans-
form (CT) [21] which achieves a directional filtering of dif-
ferent frequency parts by directional filter banks (DFB) com-
posed of fan filters as (2)

Ueqk (z) = Ui(z)Uj(z
Q), i, j ∈ {0, 1}, (2)

whereUi andUj are the fan filters, andQ represents a rotation
operator. More details can be referred in [19].

As multiple views usually lie alongside every fixed dis-
tance in the actual arrangement, there is a disparity d between
the left view Di and the right view Dj in the horizontal direc-
tion as in [22]

d = Di −Dj =
Bf

Z
. (3)
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B is the baseline distance between depth sensors. f is the
focal length, and Z is the actual depth of field.

We firstly find the common depth map region Ω in mul-
tiple views. Then we transform Ω in depth maps of differ-
ent views by NSCT. The transform coefficients Ψp,qn of noisy
depth map of view n can be obtained by (4),

Ψp,qn = Uκ
�
Hφ

�
DLR
n

��
, κ ∈ {0, 1},

φ ∈ {1, 2, . . . , 2k}, and n ∈ {1, 2, . . . , N},
(4)

where p is the level of NSP, and q is the direction number of
NSDFB.

3.2. BayesShrink threshold based depth map denoising in
NSDFB domain

The noisy NSCT coefficients Ψp,qn can be regarded as a result
of original NSCT coefficients ψp,qn corrupted by noise ε as

Ψp,qn = ψp,qn + ε. (5)

In this paper, we denoise the depth map coefficients by
setting a BayesShrink threshold [23] proposed by Chang et
al. For a given parameters set, the objective is to find a soft-
threshold δpn in pth level of view nwhich minimizes the Bayes
risk,

r (δpn) = E
�
ψ̂pn − ψpn

�2
= EψpnEψ̂pn|ψpn

�
ψ̂pn − ψpn

�2
(6)

where ψ̂pn is the denoised NSCT coefficients of view n in pth
level, ψ̂pn|ψpn ∼ N(ψ̄pn, σ

2
ε), ψ̄pn is the mean value of ψ̂pn, σε is

the standard deviation of ε. Denote the optimal threshold by
δ̂pn ,

δ̂pn = arg min
δpn

r(δpn). (7)

First, as the intensity of noise is unknown, a robust median
estimator [24] is used from the finest scale coefficients of the
first level to estimate the standard deviation σε of ε from the
noisy coefficients Ψpn .

σε = median(Ψ1
n)/0.6745. (8)

The standard deviation of each level σpΨ can also be estimated
as (9),

(σpΨ )2 =
1

M

X
q

(Ψp,qn )2 (9)

where M indicates the number of the noisy NSCT coeffi-
cients in pth level. As (σpΨ )2 = (σpψ)2 + σ2

ε , the stan-
dard deviation of original NSCT coefficients is calculated as

σpψ =
q

max
�
(σpΨ )

2 − σ2
ε , 0
�

. As there is no closed form

solution for δ̂pn, BayesShrink threshold δ̇pn is used as an ap-
proximate solution to δ̂pn,

δ̇pn =

8<
:

σ2
εÈ

max
�
(σpΨ)

2−σ2
ε ,0
� , σ2

ε < (σψ)2,

max (|Ψpn|) , σ2
ε ≥ (σψ)2.

(10)

Equation 11 gives a soft threshold function of the filter crite-
rion

ψ̂pn = sgn(Ψpn) ·max
�
|Ψpn| − δ̇pn, 0

�
. (11)

3.3. Depth map Super resolution based on contour multi-
scale directional fusion via NSCT

This section gives an introduction about the process of
depth map super resolution based on multiscale NSCT fu-
sion. Firstly, the denoised transform coefficients {ψ̂p,qn |n =
1, . . ., i, . . ., N} of N views are fused together.Since NSCT
is a multiscale transform, depth map can be transformed into
various grained coefficients, such as from coarse grained ψ̂ci
to fine grained ψ̂fi of view i. We fuse the coefficients of mul-
tiple views with same grain such as ψ̂ci and ψ̂cj , ψ̂

f
i and ψ̂fj ,

according to the max Coefficient Absolute Value (mCAV)
rule,

ψ̃p,qi (x, y) = max
n∈{1,2,...,N}

�
|ψ̂p,qn (x, y)|

�
, (12)

where ψ̃p,qi indicates the fused coefficients in pth level with
qth direction of view i, (x, y) refers to the coordinate of the
depth pixel.

Utilizing inverse NSCT with the obtained fused coeffi-
cients from coarse grained to fine grained, we can get a fused
depth map with more contour information of the size as re-
gion Ω. The fused depth map D̃LR

i is gained by (13),

D̃LR
i =

X
κ∈{0,1},φ∈{0,1}

�
Gφ
�
U−1κ (ψ̃i)

��
. (13)

In order to gain a complete fused depth map of the target
view i, we incorporate the uncommon region in view i into
the fused depth region as in (14),

D̆LR
i (x, y) =

¨
D̃LR
if

(x, y), if (x, y) ∈ Ω

DLR
i (x, y), otherwise

(14)

where D̆LR
i is the refined LR depth value of view i.

Finally, the refined LR depth map D̆LR
i is upscaled to a

high resolution depth map DLR
i utilizing a edge-guided JBU

as (15), which effectively avoid the texture copy artifacts and
blurred edge artifacts,

DHR
i (x′2, y

′
2)=

1

θx′2,y′2

X
(x1,y1)∈Θ

D̆LR
i (x1, y1)S (x1, y1, x2, y2)

(15)

·
�
α<
�
‖Ix′2,y′2−Ix′1,y′1‖

�
+ (1− α)= (‖Ix2,y2−Ix1,y1‖)

�
where θx′2,y′2 is a normalization factor, Θ is a neighborhood
centered at (x2, y2). (x′1, y

′
1) and (x′2, y

′
2) refer to the cor-

responding HR pixel coordinate of the LR pixel coordinate
(x1, y1) and (x2, y2) respectively. S , < and = are Gaussian
kernel functions about distance, illumination and depth differ-
ence respectively. α is a discriminating factor which ranges
from 0 to 1 depending on the distance between its location in
LR depth map to adjacent edge.
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Algorithm TGV [25] JABDU [26] R [9] SDF [3] MDMF+VSQ-TDU [10] Ours
PEP PEPD PEP PEPD PEP PEPD PEP PEPD PEP PEPD PEP PEPD

Art 5.79% 5.04% 11.61%10.53% 16.41%15.66% 4.36% 3.77% 11.60%10.12% 3.26% 2.58%
Books 4.32% 3.66% 3.70% 3.12% 10.20% 9.35% 3.57% 2.56% 2.88% 2.54% 1.79% 1.16%
Dolls 3.53% 3.24% 4.24% 3.76% 10.59% 9.94% 3.08% 2.32% 3.18% 2.97% 2.64% 2.03%
Laundry 3.74% 3.15% 6.03% 4.28% 9.00% 8.18% 2.93% 2.16% 5.96% 4.13% 2.77% 1.96%
Midd1 7.18% 6.02% 3.54% 3.19% 13.28%11.99% 5.93% 5.06% 2.65% 2.07% 2.13% 1.52%
Moebius 4.21% 3.42% 4.74% 4.01% 11.34%10.65% 3.06% 2.58% 3.83% 3.40% 2.32% 1.47%
Monopoly 4.54% 3.39% 3.70% 3.22% 6.42% 5.21% 3.23% 2.89% 2.91% 2.56% 1.98% 1.35%
Reindeer 3.79% 3.14% 5.00% 4.58% 9.76% 8.35% 2.66% 2.08% 4.49% 3.41% 2.17% 1.39%
average 4.64% 3.88% 5.32% 4.59% 10.88% 9.92% 3.60% 2.93% 4.69% 3.90% 2.38% 1.68%

Table 1: Quantitative depth upsampling results on Middlebury datasets

4. EXPERIMENTAL RESULTS AND ANALYSIS

We implement our experiments on Middlebury Dataset [27].
We use eight sets which are Art, Books, Dolls, Laundry, Mid-
d1, Moebius, Monopoly, and Reindeer. We downsample the
corresponding HR depth map with the scaling factor 4 to get
the LR depth map. The level of Laplacian pyramids is set
as 3. The numbers of directions at each level are 2, 4 and 8
from higher to lower level respectively. Considering actual
condition that depth maps are corrupted by photon shot noise,
we conduct Gaussian Noise on the depth map with standard
deviations of 4 as [10] to compare the performance of super
resolution without denoising and with denoising.

4.1. Experimental comparison on super resolution with-
out and with denoising

To verify the performance of the proposed method, we com-
pare our method with five state-of-the-art methods, i.e., to-
tal generalized variation(TGV) [25], joint adaptive bilateral
depth map upsampling (JABDU) [26], R-method [9], join-
t static and dynamic filter (SDF) [3], and MDMF+VSQ-TDU
[10]. We utilize PEP (the percentage of error pixels whose
disparity error is larger than 6 pixels in the up-sampled depth
maps) and PEPD(PEP after denoising) as the assessment cri-
terias simultaneously. Table 1 shows the quantitative results
of super resolution without denoising and with denoising. It
can be seen that we gain the lowest PEP and PEPD compared
with other state-of-the-arts. As some depth map SR method-
s take a bilateral filter as denoising filter, in this paper, we
take this treatment as the denoising method for other meth-
ods. Fig. 2 shows visually comparison on depth map super
resolution results with denoising for images Books. It can be
seen that result of our proposed method successfully avoids
texture copy artifacts, blurred edge artifacts and jagged edge
artifacts beyond the other methods while processing noise.

5. CONCLUSION

We propose a multiscale directional fusion method for depth
map super resolution with denoising via NSCT to enhance
the resolution of the depth map. On one hand, multiscale
directional fusion based depth map SR method upscales the
depth map in different scales according to the contour ori-
entation of the depth map, which is extremely proper to re-
tain the contours in depth map, effectively averting texture
copy artifacts, blurred and jagged edge artifacts. On the oth-
er hand, BayesShrink threshold based denoising in NSDFB
domain markedly mitigates the noise corrupted in the depth
map. Experimental results demonstrate that our method sig-
nificantly outperforms the state-of-the-arts quantitatively and
visually while mitigating the corrupted noise.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 2: Visually comparison of depth map super resolution re-
sults with denoising for images Books and Reindeer, (a) ground
truth, (b–g) depth map uspampled by TGV, JABDU, R-method,
MDMF+VSQ-TDU, SDF, ours.
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