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ABSTRACT 

 
Despite extensive researches for face recognition (FR), it is still 

difficult to apply deep CNN models to NIR FR due to a lack of 

training data. In this study, we propose a fine-tuning approach to 

allow deep CNN models to be applied to NIR FR with small 

training datasets. In the proposed approach, parameters of deep 

CNN models for RGB FR are utilized as initial parameters to train 

deep CNN models for NIR FR. The proposed approach has two 

main advantages: 1) High NIR FR performances can be achieved 

with very small public training datasets. 2) We can easily secure 

good generalization for NIR FR in various environments. Our fine-

tuning approach achieved a validation rate of 99.70% with the 

PolyU-NIRFD database. In addition, we constructed private face 

databases with Intel®  RealSenseTM SR300. On the VF_NIR 

database, which is one of the private databases, we achieved a 

validation rate of 94.47%. 

 

Index Terms— Face verification, face identification, 

biometrics, deep learning, transfer learning 

 

1. INTRODUCTION 

 
Face recognition (FR) is one of the most actively researched 

biometrics in the field of computer vision. The performance of 

RGB FR has been improved by more than 99% by developing deep 

convolutional neural network (CNN) models [1-6]. However, RGB 

face images have a disadvantage in that the intensity of the face 

part of the image is largely dependent on the lighting environment. 

Especially, as shown in Fig. 1, the intensity of RGB face images 

changes drastically in smartphone unlocking scenarios, such as on 

a dark street or indoors. 

To overcome the above-mentioned disadvantage of RGB 

images, several studies on near-infrared (NIR) FR have been 

conducted, because NIR face images are less affected by the 

illumination environment due to the active NIR lights of NIR 

sensors. Recently, NIR FR based on deep CNN models has been 

researched to improve the performance of face recognizers to as 

good as those for RGB FR [7-13]. In existing NIR FR approaches 

[14, 15], deep CNN models with simple structures have been 

introduced, and these approaches achieve good performances (95% 

or above) [14, 15]. However, since the performance evaluation of 

the existing approaches was conducted on NIR face databases, 

which are constructed in limited environments, the same high 

performance cannot be expected in real-world FR scenarios, which 

involve various environments. Therefore, to improve the 

generality of NIR FR, we must apply complex deep CNN archite- 

 
Fig. 1. RGB face images in several lighting conditions. The 

images were acquired assuming real smartphone unlocking 

scenarios. In (a) and (b), the face images were captured in an 

outdoor environment with bright and weak lighting. (c) shows the 

image captured in an indoor environment with weak lighting. (d) 

was captured in the similar environment as (c) but with the shadow 

on the face. (e) was captured in a room with extremely weak 

lighting. 

 

ctures  [1, 4, 5, 8] to NIR FR; such architectures have been shown 

to be powerful for RGB FR in various environments. However, when 

complex deep CNN architectures are directly applied to NIR FR, 

we cannot expect good performance because the architectures are 

insufficiently trained by public NIR face databases. The size of 

current NIR face databases is only one tenth of the well-known 

CASIA WebFace database [18] for RGB FR. 

To solve this issue, we have used a fine-tuning approach that 

utilizes pre-trained information from a deep CNN model for RGB 

FR to improve the performance of NIR FR. More specifically, the 

proposed fine-tuning approach utilizes parameters of the pre-

trained RGB model as the initial parameters of the NIR deep CNN 

model. The NIR deep CNN model means the deep CNN model for 

NIR FR, and the pre-trained RGB model means the deep CNN 

model which is trained by RGB face images before the NIR deep 

CNN model is trained.  In addition, we have shown how the pre-

trained RGB model can be effectively used to solve NIR FR 

problems. In the experimental results section, we discuss the 

performance evaluation which we conducted by applying off-the-

shelf deep CNN architectures to the fine-tuning approach using 

NIR face images, and we show which deep CNN architecture has 

the best performance in NIR FR among the architectures. In 

addition, the performance of the proposed fine-tuning approach is 

compared with existing methods such as NIR FR [14, 15] and 

RGB FR. Finally, we show that the proposed approach has better 

generalization ability for various environments in a real-world FR 

scenario than existing NIR methods [14, 15] and RGB FR. 

 

2. PROPOSED FINE-TUNING APPROACH 

 
In this study, the NIR FR method is the same as FaceNet [10]. An 

image pair, which includes two NIR face images, is used as an 

input to the NIR face recognizer. If the input image pair includes  
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Fig. 2. The NIR deep CNN model training method based on the 

proposed fine-tuning approach 

 

two faces of the same person, it is a positive pair; otherwise, it is a 

negative pair. Deep features of the input pair are extracted from the 

NIR deep CNN model, and NIR FR is conducted using the 

Eclidean distance of the deep features. If the value of Eclidean 

distance is smaller than a threshold, the input pair is recognized as 

a same person. Otherwise, the input pair is recognized as a 

different person. 

 
2.1 Training NIR Deep CNN Model 

 
The proposed fine-tuning approach is adopted to train the NIR 

deep CNN model using only tens of thousands of NIR face images. 

Fine-tuning is a transfer learning method [16, 24, 25]. Transfer 

learning indicates that the information acquired to solve one 

problem is utilized to solve another. In the proposed fine-tuning 

approach, the information of the pre-trained RGB model is used to 

train the NIR deep CNN model. Fig. 2 shows the proposed fine-

tuning approach, and a detailed explanation is as follows: 

 

1) The pre-trained RGB model is trained by hundreds of thousands 

of RGB face images, and the parameters of the model are 

acquired.  

2) These parameters are set as the initial parameters of the NIR 

deep CNN. 

3) Training of the NIR deep CNN model is conducted by finely 

updating the initial parameters of the model. 

 

The above-mentioned fine-tuning approach alleviates the need for 

direct training. Direct training is a method where initial parameters 

of a deep CNN model are set randomly before training. The 

drawback of direct training is that recognition performance is 

degraded when using small NIR face databases. The proposed fine-

tuning approach makes it possible to train the NIR deep CNN 

model effectively. This is due to the similarity between the 

parameters of the NIR deep CNN model and the pre-trained RGB 

model. As shown in Fig. 3, convolution filter outputs of the NIR 

deep CNN model and the pre-trained RGB model are highly 

similar. We used VGG-16 [1] as the deep CNN architecture of 

the NIR deep CNN model and the pre-trained RGB model. The 

two models were trained with direct training. In Fig. 3, the 

convolution layers’ filter outputs for the pre-trained RGB model 

and the NIR deep CNN model were acquired from the same input 

NIR face image. The convolution filter outputs of the two models 

have the same characteristics, with high values in facial structures 

such as eyes, eyebrows, a nose, a mouth, and face contours. As a 

result, the convolution filters of the pre-trained RGB model and the 

NIR deep CNN model are similarly trained to detect the facial 

structures easily. 

 
Fig. 3. Convolution filter outputs of the pre-trained RGB model 

and the NIR deep CNN model. (a) The input NIR face image. (b) 

and (c) The first and second convolution layers’ filter outputs for 

the pre-trained RGB model, respectively. (e) and (f) The first and 

second convolution layers’ filter outputs for the NIR deep CNN 

model, respectively. 

 

2.2 Deep CNN Architectures for NIR FR 

 

In this study, NIR FR was performed by off-the-shelf deep CNN 

architectures, and we confirmed the best one among the deep CNN 

architectures. The deep CNN architectures used for the 

performance evaluation are VGG-16 [1], Inception-Resnet-v1 [5], 

Inception-Resnet-v2 [5], DeepID2 [8], and ResNet-152 [4]. The 

size of the input NIR face images was 160x160, and the dimension 

of all extracted deep features from the input images was 128. Cross 

entropy loss was used to train all deep CNN architectures. In 

DeepID2, the deep CNN architecture was trained by cross-entropy 

loss and verification loss. Verification loss is similar to triplet loss, 

which was developed in FaceNet [10]. 

 

2.3 NIR Face Databases 

 

In this study, we utilized several public NIR face databases to 

conduct the performance evaluation. The public databases are 

CASIA NIR [19], CASIA NIR-VIS 2.0 [20], PolyU-NIRFD [21], 

ND-NIVL [22] and INF databases. The INF database is 

constructed by integrating the CASIA NIR-VIS 2.0, PolyU-NIRFD, 

and ND-NIVL databases. To conduct performance evaluation for 

NIR FR in different environments from the public NIR face 

database, the VF_NIR, VF_RGB, VF_PLC_NIR, and 

VF_PLC_RGB databases were constructed using Intel®  

RealSenseTM SR300. Fig. 4 shows sample images from the 

VF_NIR, VF_RGB, VF_PLC_NIR, and VF_PLC_RGB databases. 

VF_NIR and VF_RGB databases respectively contain the NIR and 

RGB face images, which were captured in an indoor fluorescent 

lighting environment. VF_PLC_NIR and VF_PLC_RGB databases 

were constructed in poor lighting conditions. The two databases 

include not only the face images in poor lighting conditions, but 

also those from the VF_NIR and VF_RGB databases. VF_NIR and 

VF_RGB database contain 500 NIR and RGB face images for 10 

labels, respectively. In VF_PLC_NIR and VF_PLC_RGB 

databases, there are 550 NIR and RGB face images for 11 labels, 

respectively. All NIR face images were aligned based on MTCNN 

[17]. The effect of MTCNN is that eyes, noses, and mouths are 

aligned in similar positions on the images. 
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Table 1. The size of training and validation data in each public NIR face database 

Database # of training data # of labels for training # of validation data # of labels for validation 

CASIA NIR [19] 2,798 140 1,140 57 

CASIA NIR-VIS 2.0 [20] 8,703 505 3,782 216 

PolyU-NIRFD [21] 17,808 159 6,890 68 

ND-NIVL [22] 18,314 403 3,667 165 

INF 44,825 1,067 14,339 449 

 

 
Fig. 4. RGB and NIR face images from Intel RealSense SR300 in 

various lighting conditions. VF_RGB, VF_NIR, VF_PLC_RGB 

and VF_PLC_NIR databases are in order from the first row. 

 

3. EXPERIMENTAL RESULTS 

 
In this section, we present the three experiments for showing the 

priority of the proposed fine-tuning approach. The three 

experiments are as follows. 

 
3.1 Performances on Public NIR Face Databases 

 
In this experiment, we showed the best NIR deep CNN architecture 

among off-the-shelf deep CNN architectures [1, 4, 5, 8] in the 

proposed fine-tuning approach. This experiment was conducted 

with the CASIA NIR [19], CASIA NIR-VIS 2.0 [20], PolyU-

NIRFD [21], ND-NIVL [22], and INF databases. We split each 

public database into training and validation data. Table 1 shows 

the number of training and validation data for each public database 

along with the number of labels. To conduct a performance 

evaluation, 6000 validation pairs were extracted from validation 

data. Validation pairs contain 3000 positive and negative pairs, 

respectively. 

Fig. 5 shows the validation rate of the NIR deep CNN 

architectures for the public NIR face databases [19-22]. The 

validation rate was calculated with a fixed FAR of 0.1%. VGG-16 

[1], Inception-Resnet-v1 [5], and Inception-Resnet-v2 [5] achieved 

more than 99% performance on most public NIR face databases. 

VGG-16 showed the highest performances of 99.57%, 99.60%, 

and 99.57% on CASIA NIR-VIS 2.0 [20], ND-NIVL [22], and 

INF databases, respectively. Inception-Resnet-v1 achieved the 

highest performances of 99.27% and 99.70% on CASIA NIR [19] 

and PolyU-NIRFD [21] databases, respectively. DeepID2 [8] and 

ResNet-152 [4] showed lower NIR FR performances on all public 

NIR face databases than VGG-16, Inception-Resnet-v1, and 

Inception-Resnet-v2. In particular, the performances of these two 

NIR deep CNN architectures were lower than 90% on the CASIA 

NIR database. As a result, we showed that VGG-16 achieved the 

best performance in NIR FR based on the proposed fine-tuning 

approach, and Inception-Resnet-v1 and v2 showed similar 

performances to VGG-16. 

 

3.2 Comparison with Existing Methods 

 

In this experiment, we compared the performances of the proposed 

fine-tuning approach with those of the existing NIR FR methods 

[14, 15]. The performance evaluation was conducted for the 

identification scenario. VGG-16 [1], Inception-Resnet-v1 [5], and 

Inception-Resnet-v2 [5] were used as NIR deep CNN architectures 

in the proposed fine-tuning approach. Detailed information on 

databases is as follows: 

Training images The training data of the INF database in Table 1 

was used to train the NIR deep CNN model of the proposed fine-

tuning approach and the existing methods [14, 15]. For the existing 

methods, the softmax classifier was trained. To construct training 

data for the classifier, we extracted 591 NIR face images from the 

CASIA NIR [19] database. 

Gallery / Probe images In the fine-tuning approach, gallery and 

probe images are required to evaluate NIR FR performance. We 

used 591 NIR face images from the CASIA NIR [19] database as 

the gallery images. Then, all images from the CASIA NIR database 

other than the gallery images were used as the probe images. In the 

case of the existing methods [14, 15], the gallery images are not 

required for NIR FR due to the softmax classifier, and the probe 

images were used in the same manner as in the proposed fine-

tuning approach. 

The result of this experiment is shown in Table 2. The 

existing methods [14, 15] show identification rates of 90.89% and 

88.65%, respectively. The existing methods cannot secure enough 

performance to be used as biometrics. In the proposed fine-tuning 

approach, we achieved identification rates of 98.15%, 97.22%, and 

99.67% for VGG-16 [1], Inception-Resnet-v1 [5], and Inception-

Resnet-v2 [5], respectively. This experiment was conducted in a 

poorly constrained environment. In other words, the training and 

probe images were acquired from different public databases. The 

proposed fine-tuning approach showed up to 11% higher 

performances than the existing methods. Considering the 

experimental results, the proposed fine-tuning approach secured 

better generalization ability in a poorly constrained environment 

than existing methods. 

 

3.3 Comparison with RGB FR 

 

To compare the generalization ability of the proposed approach 

with that of RGB FR, two experiments were conducted. NIR FR 

and RGB FR were trained based on the proposed fine-tuning appr-
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Fig. 5. The validation rate of the NIR deep CNN architectures according to the public NIR face databases. 

 

Table 2. The identification rate of the proposed fine-tuning 

approach and existing methods. 

NIR FR methods Identification rate(%) 

Zhang et al. [14] 90.89 

Peng et al. [15] 88.65 

Fine-tuning (VGG-16) 98.15 

Fine-tuning (Inception-Resnet-v1) 97.22 

Fine-tuning (Inception-Resnet-v2) 99.67 

 

oach and RGB direct training, respectively. VGG-16 [1] was used 

as the deep CNN architecture for both NIR and RGB FR. A 

detailed explanation of these experiments is as follows: 

Experiment 1 To compare the generalization ability of RGB and 

NIR FR in the poorly constrained environments, we assumed a 

real-world FR scenario. In this scenario, well constrained 

environments are insecure because many unexpected situations can 

occur during the FR process. In this experiment, to realize a real-

world FR scenario, we constructed test databases in different 

environments from training and validation databases. The INF 

database was utilized for training and validation in NIR FR, and 

the VF_NIR database was used for testing. In the case of RGB FR, 

the CASIA WebFace [18], LFW [23], and VF_RGB databases 

were used for training, validation, and testing, respectively. The 

accuracy, validation rate, and FAR were used as the performance 

metrics. 

Results of Experiment 1 As seen in Table 3, although RGB FR 

achieved a validation rate of 100.00%, a FAR is also high at 

57.30%. For the FAR value, RGB FR cannot provide sufficient 

security to be used as a biometric in the poorly constrained 

environments. On the other hand, NIR FR based on the proposed 

approach achieved a FAR of 0.7%, and this value is considerably 

lower than for RGB FR. In addition, NIR FR achieved the high 

accuracy of 96.88% and high validation rate of 94.47%. As a result, 

NIR FR based on the proposed approach has better generalization 

ability than RGB FR for environmental variations. 

Experiment 2 This experiment was conducted to compare the 

generalization ability of NIR and RGB FR in poor lighting 

conditions. The training methods and training databases of NIR 

and RGB FR were the same as in the first experiment. In this 

experiment, the VF_PLC_NIR database was used as the validation 

database for NIR FR. In the case of RGB FR, the VF_PLC_RGB 

Table 3. The performances of the proposed fine-tuning approach 

and RGB FR in the real-world FR scenario. 

Method Accuracy(%) Validation rate(%) FAR(%) 

NIR FRa 96.88 94.47 0.7 

RGB FR 71.35 100.00 57.30 
a NIR FR indicates the proposed fine-tuning approach. 

 

Table 4. The performances of the proposed fine-tuning approach 

and RGB FR in the poor lighting conditions. 

Method Accuracy(%) Validation rate(%) FAR(%) 

NIR FRa 96.65 84.90 0.1% 

RGB FR 86.50 44.03 0.1% 

 

database was utilized as the validation database. In this experiment, 

the validation database was used for performance evaluation. The 

accuracy and validation rate were used as performance metrics, and  

the FAR was fixed at 0.1%. 

Results of Experiment 2 As shown in Table 4, RGB FR achieved 

an accuracy of 86.50% and validation rate of 44.03%. On the other 

hand, NIR FR achieved an accuracy of 96.65% and validation rate 

of 84.90%. The performances of NIR FR are significantly higher 

than those of RGB FR. Consequently, NIR FR based on the 

proposed fine-tuning approach has better generalization ability in 

the poor lighting conditions than RGB FR. 

 

4. CONCLUSION AND FUTURE WORK 
 

In this paper, we proposed a fine-tuning approach to effectively 

train a deep CNN model for NIR FR by utilizing the parameters of 

a pre-trained RGB model. Also, we justified this fine-tuning 

approach by showing the similarity between the parameters of an 

NIR deep CNN model and a pre-trained RGB model. The 

proposed fine-tuning approach achieved high validation rates of 

more than 99% on the public NIR face databases. In addition, the 

proposed approach showed better generalization ability in various 

lighting conditions and environments than the existing NIR FR 

methods [14, 15] and RGB FR. However, we found that the FR 

performances of the proposed fine-tuning approach tend to be 

correlated with the type of NIR sensors. Therefore, in future work, 

we will focus on alleviating the sensor dependency of NIR FR. 
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