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ABSTRACT

Deep neural networks have shown great achievements in solv-
ing complex problems. However, there are fundamental chal-
lenges which limit their real world applications. Lack of a
measurable criterion for estimating uncertainty of the network
predictions is one of these challenges. However, we can com-
pute the variance of the network output by applying spatial
transformations, distortions or noise injection to network in-
puts and interpret these variances as uncertainty of the net-
work predictions. In other words, as long as the deformations
do not conceptually alter target of interest, we expect the net-
work to produce the same result. Hence, any outputs changes
can be a sign of uncertainty in the network predictions. In
order to estimate the prediction uncertainty of deep convo-
lutional neural networks we use simple random transforma-
tions. By exploiting the network uncertainty, we improve the
overall performance of the system. For a real use case, we
apply the proposed method to segment left ventricle in MRI
cardiac images. Experimental results demonstrate state–of–
the–art performance and highlight the potential capabilities
of simple ideas in conjunction with deep neural networks.

Index Terms— adaptive thresholding, conditional ran-
dom fields, deep convolutional networks, segmentation

1. INTRODUCTION

The explosion of interest in using deep neural networks, fu-
eled by their success in solving complex real world problems,
has led to birth of impressive automated medical image anal-
ysis systems. Despite their capacity to learn rich hierarchical
features, their output is usually a single number, resembling
a kind of belief the network has about the input. However,
there is usually no clue about how confident the model is
about its prediction. This could be an alarm, especially in
critical applications such as medical diagnosis where an es-
timate about reliability or confidence of the network output
is a need. In this work, we try to model uncertainty of the

output probability map using Monte Carlo sampling from a
linear manifold on which the input image lies. This process
is done by applying random affine transformation on input
images. In contrast to other approaches which sample output
by direct injection of noise to model internal representation
[1], we perturb the input and check whether the system can
respond properly or not. Since we know the perturbation
process and its effect on the input, our approach offers more
interpretable results about the model uncertainty compared
to [1] which injects noise into the network neurons. Having
computed the heat maps and uncertainty of the model using
this technique, we apply an adaptive thresholding method
based on a modified Conditional Random Fields (CRFs) to
get the final segmentation mask.
For a use case of our proposed method, we use left ventricle
segmentation in MRI cardiac images because of their impor-
tance. Cardiac diseases are one of the top causes of death
especially in developed nations around the world. Despite
massive investments on developing equipment, medicines
and pre-caution strategies, there is still a huge gap between
annual death reports caused by cardiac failures and an ideal
world in which these diseases are fully under control [2].
To summarize, the contribution of this paper is three–fold:
First, we compute uncertainty of the model output using
Monte Carlo sampling in the input space using a well-defined
affine transformation. Second, we utilize this information to
improve the final segmentation accuracy by extending CRF
formulation. Third, we apply our method to left ventricle
MRI image segmentation and achieve state-of-the-art results.
The rest of this paper is organized as follows: in section 2, a
literature review is presented, section 3 gives a detailed expla-
nation of the proposed methods. In section 4, experimental
results are discussed and finally we conclude in section 5.

2. LITERATURE REVIEW

Invention of fully convolutional neural networks(FCNs) [3]
paved the way for popularizing the use of deep neural net-
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Fig. 1. Block diagram of the proposed method

works in semantic segmentation tasks. Since then, many en-
hancements and architectural changes have been proposed for
improving accuracy [4] and operational speed [5].

In the field of computational medical image analysis, a
specific architecture called U-Net [6] is successfully applied
for solving a range of complex tasks, including segmentation.
Recently, a number of research works have demonstrated the
capability of deep learning methods in solving medical tasks
comparable to that of human performance [7], [8]. Particu-
larly, for the problem of left ventricle segmentation a wide
range of methods have been proposed. Algorithms based on
active contours and shape models are arguably one of the ear-
liest and most popular tools used in this context [2]. More
recently, a method based on dynamic programming has been
proposed by [9]. Deep neural networks are of recent propos-
als in solving left ventricle segmentation problem [10], [11].

For incorporating model uncertainty in deep neural net-
works, one suggestion is to inject noise into network internal
representations by various means such as test time dropout
[1]. Another line of work is to make the network model a dis-
tribution family over the input rather than direct prediction of
the desired output [12]. Compared to previous methods, our
approach is certainly more controllable and interpretable, due
to our knowledge of input space and perturbation process.

In this work, we employ an adaptive thresholding algo-
rithm based on conditional random field models. Adaptive
thresholding by using context or combination of local and
global information to improve the segmentation is a mature
topic in classical image processing. Otsu and Sauvola [13] is
one of the most popular methods. Conditional random fields
is another extensively investigated schemes among the deep
learning community, especially after the introduction of fully
connected CRFs introduced in [14]. In this work we extend
the formulation presented in [14] to incorporate our proposed
belief about the uncertainty of segmentation results.

3. PROPOSED METHOD

The proposed pipeline consists of three major components, as
demonstrated in Figure 1. First of all, there is a random trans-
formation generator which takes an image as input and gener-
ates several random transformations. The second component
at the core of the pipeline, is a deep FCN while the last mod-
ule in the pipeline uses these outputs to compute appropriate
statistics for the final segmentation result, which utilize an
uncertainty Extended CRF (UE-CRF). In the following sub-
sections we elaborate on details of each module.

3.1. Heat-map prediction

The core of the pipeline is built upon the idea of fully con-
volutional neural networks and is shown in Figure 1. Among
vast variety of architectures, U-Net is one of the most well-
known ones for medical image analysis. Due to great success
of deep learning in general and specifically U-Net architec-
ture in solving complex medical tasks [6], we utilize a similar
structure by proposing an improved version of U-Net [15].
In a nutshell, U-Net is an auto-encoder based architecture in
which the encoder extracts the most salient features with re-
gards to the input-output relationship. Given the encoded fea-
tures of input image, decoder tries to predict the final answer,
which in our case is a segmentation map. Furthermore, there
are data flow connections between each encoder and its cor-
responding decoder. These shortcut links are crucial, espe-
cially in problems such as semantic segmentation to preserve
spatial information which might be corrupted as a result of
down-sampling procedures, such as max-pooling or strided
convolution [1]. To encourage the network towards further
generalization and prevent overfitting, a spatial dropout layer
is used after the last decoder block. This is shown to be more
effective than vanilla dropout in working with highly corre-
lated spatial data like image and video data [16].
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3.2. Variance Estimation

We feed various distortions or transformations of an input im-
age to the network and calculate statistical variance of all seg-
mentation results, as an indicator of the network uncertainty.
There are various ways to transform images. For instance, it
may be based on geometric operation such as affine transfor-
mation. There are also methods based on the intensity values,
e.g. contrast jitter or intensity histogram mappings. In this
work we limit our approach to geometric operations. For this
purpose, a random affine transformation is applied on each
input image prior to feeding into the deep CNN. The random
affine matrix A, is built based on the following distributions.

A(tx, ty, θ) =

cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty

0 0 1

 (1)

tx, yy ∼ Uniform(−T
2
,+

T

2
) (2)

θ ∼ Uniform(− πR
360

,+
πR

360
) (3)

where scalars T and R in (2) and (3), determine range of
translation (in pixels) and rotation (in degrees) respectively.
As is evident from (1), we only use translation and rotation
transformations to build the affine matrix. Each generated
matrix is stored in memory to compute the inverse transfor-
mation in later stages in which we apply it on the output of
the CNN.

3.3. Conditional Random Field

Having computed the FCN uncertainty or variance of the net-
work outputs, we apply an extension of CRF which takes the
network uncertainty into account for improving the segmen-
tation accuracy. We use fully conditional random fields as
proposed in [14] which efficiently captures the interactions
between every pairs of random variables. At inference, we
assign a state to every random variable in order to minimize a
total energy as defined by Equation (4).

E(x) =
∑
i

µ(xi) +
∑
i

∑
j>i

ρ(xi, xj) (4)

µ(xi) = fµ(mi, σi) (5)

ρ(xi, xj) = δ(xi, xj)
∑
k

w(k)fkϕ(ϕi,ϕj) (6)

In (4), (5) and (6), µ(xi) and ρ(xi, xj) are unary and pair-
wise terms as defined by general Equations (5) and (6). Func-
tions fµ(mi, σi) and fkϕ(ϕi,ϕj) are user defined to control
the behavior of unary and pairwise terms. mi and σi are me-
dian and standard deviation of each pixel as computed in sec-
tion 3.2. ϕi is a feature vector extracted from location i, such
as intensity, location or any handcrafted feature. The set of

Image Median Standard deviation

Fig. 2. Exploratory analysis of dataset and FCN behavior.
Top row shows the case of a successful segmentation. Bottom
row shows the second case in which the region of interest is
captured by uncertainty mask rather than the median.

kernel functions, fkϕ, computes the similarity between their
input arguments. Moreover, learnable weights shown as w(k)

are for each kernel and δ(xi, xj) is called label compatibil-
ity function, which captures the dependency between random
variables xi and xj .

The intuition behind incorporating uncertainty into the en-
ergy function of Equation (4) is inspired by our exploratory
analysis of training data and their uncertainty masks. We ob-
serve two major cases in our experiments, as shown in Figure
2. The first one is when the heat map prediction network cor-
rectly identifies the region of interest which is the left ventri-
cle in our experiments. In this scenario, the uncertainty map
is indicative of the segmented region boarder. The second
case is when the network is not able to consistently locate and
segment the left ventricle in most of the transformed MRI im-
ages. Interestingly, in this situation the uncertainty map is
highly correlated with the segmentation ground truth. In the
light of above case analysis, the unary term is defined as:

µ(xi) = fµ(mi, σi) = − log(mi + λσi) (7)

where λ is a hyper-parameter. We call this model UE-
CRF(U). Pairwise terms are also defined as follows:

ρ(xi, xj) = w(1)exp(−‖pi − pj‖2

2σ2
s

) + (8)

w(2)exp(−‖pi − pj‖2

2σ2
s

− ‖li − lj‖2

2σ2
l

)

in which pi and li are pixel intensity and location respec-
tively. σs and σl are hyper–parameters that control the sensi-
tivity of the pairwise term to variations of intensity and loca-
tion.

For the sake of comparison, we also compare our results
with vanilla CRF. The unary term in this model is the negative
log of the predicted probabilities of the original image.
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4. EXPERIMENTAL RESULTS

We use the York dataset of cardiac MRI sequence [2] for train-
ing and evaluation. Dataset consists of 33 patients, for each of
which, there are 20 MRI series with 8 to 15 slices. Each slice
is a single channel image with spatial size of 256x256. In
total, dataset contains 7980 MRI images, while only 5011 of
them have segmentation ground-truth. In training and testing
phases, we solely use the frames with segmentation labels.
Some samples from the dataset are shown in Figure 3 with
their corresponding ground truth.

4.1. Training and parameters tuning

Because there are no official training and validation splits
available for this dataset, fair comparison with other meth-
ods is hard. In order to alleviate this problem, we use 11-fold
cross-validation and report the average results. For each iter-
ation, the test set consists of frames from 3 patients and other
30 patients are used in the training phase. To save computa-
tional power, we resize every frame to 128× 128 pixels. The
deep FCN (c.f. section 3.1) is trained for 3000 epochs us-
ing Adam optimization [17] with initial learning rate of 10−3.
In order to improve the performance in terms of Dice coef-
ficient, we define a new loss function to directly incorporate
Dice coefficient as follows.

Loss(yt,yp) = BCE(yt,yp)−exp(1+Dice(yt,yp)) (9)

where yt is ground truth and yp is the prediction of the model.
BCE is the binary cross-entropy, widely used for binary clas-
sification problems. Dice coefficient in its original formula-
tion is not differentiable, so we use the widely adapted soft
version introduced in [6]. Soft Dice score is also shifted by
one unit in the exponential function, so we are in a regime
where gradient magnitude is bigger than one. This definition
helps to alleviate vanishing gradient problem. However, it
can introduce exploding gradients and oscillation at the end
of training. Gradient clipping by norm with threshold 5 is
used to prevent exploding gradient. For regularization, spatial
dropout rate is set to 0.5 and data augmentation such as ver-
tical/horizontal flips, rotations, translations and zooming are
also applied during training. For hyper-parameters of random
affine transformation and CRF in Equations (1) to (3), as well
as (7) and (8), we set T = 20 px and R=180◦ and optimize λ
using cross validation. λ values in range [10−2, 5∗10−1] pro-
vide good performance. We set λ = 0.1 for our experiments.

4.2. Results and comparisons

To evaluate and compare the proposed method, we use 3 dif-
ferent metrics. These metrics are Dice score, mean surface
distance (MSD) also known as average perpendicular distance
and Hausdroff distance (HD). Dice score computes the in-
tersection over union ratio of ground truth segmentation and

Fig. 3. Samples from the York MRI dataset [2] to show vari-
ations in the data. MRI frames are shown on the top row with
their segmentation ground truth on the bottom row.

proposed segmentation areas. Maximum value of 1 is ob-
tained when the proposed and ground truth segmentation per-
fectly overlaps. On the other hand, mean surface distance and
Hausdroff distance focus on the boundary or contour of the
segmentation. Mean surface distance measures the average
distance from the manually drawn contour points to the pro-
posed segmentation contour points, while the Hausdroff use
the maximum distance. The overall results are shown in Table
1.

Table 1. Models evaluation and comparison with other meth-
ods.
Method Dice(%) MSD(mm) HD(mm)

Andreopoulos [2] N/A 1.4 ± 1.3 N/A

Fast-Segment [9] 0.859 ± 0.083 2.1 ± 0.7 N/A

Multiphase B-Spline [18] 0.9052 ± 0.0260 N/A 3.4407 ± 0.0187

FCN Only 0.8859 ± 0.0247 2.3916 ± 1.3702 5.1672 ± 0.0386

FCN + Vanilla CRF 0.8973 ± 0.0173 1.9377 ± 0.9443 4.3742 ± 0.0251

FCN + UE-CRF(U) 0.9104 ± 0.0218 1.4184 ± 0.9318 3.6437 ± 0.0210

5. CONCLUSION & FUTURE WORKS

In this paper we introduced a method to utilize a measure of
uncertainty in predictions of deep convolutional neural net-
works to achieve state of the art results on left ventricle seg-
mentation in MRI images. The uncertainty is computed by
sampling from a linear manifold the input image lies on. Sam-
pling precedes with generating random affine transformation
matrix and applying it on the input image. Having computed
multiple outputs and the approximate uncertainty (standard
deviation) for each pixel, we used an adaptive thresholding
algorithm based on extended CRF formulation to obtain the
final segmentation map. Further investigation for modeling
uncertainty of the deep CNN in their predictions is crucial to
expand our understanding about internal mechanisms of these
networks.
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