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ABSTRACT 

 

We propose a novel “big data” application of geometric 

feature extraction techniques to autonomously identify and 

track the temporal evolution of charged particle trails in the 

Martian ionosphere. Specifically, we propose a Radon-

transform extension to the geometric distance transform to 

algorithmically isolate potentially overlapping trail features 

in energy spectrograms. Our methods seek to connect large- 

scale statistical analysis with individual case studies and 

thus provide the computational framework or connecting 

theoretical models with potential terabytes of remote 

sensing data. Based on individual ion populations as the 

basic unit of observation, we provide data-driven results of 

applying our method over representative energy 

spectrograms generated from the NASA Mars Atmosphere 

and Volatile Evolution (MAVEN) mission data from the 

Solar Wind Ion Analyzer (SWIA) instrument. 

Index terms— morphological signal processing, 

distance transform, radon transform, feature extraction. 

 

1. INTRODUCTION 

 
The overarching objective of this work is to automatically 

track, disentangle, and quantify the complex trajectories of 

Martian ions [1-5], at the granularity of individual ion 
populations, in the Martian atmosphere across terabytes of 

existing (and growing) data from the MAVEN mission. The 

science application of our proposed techniques is to observe 
the evolution dynamics, dependencies and interactions of 

individual ion populations at different scales of time, space, 

energy and other factors, such as impact of the solar wind on 

Martian atmospheric loss. In the larger context, such 
automated computational techniques are deeply needed to 

complement manual case studies and enable large-scale 

quantitative determination of a fundamental science question: 
How did Mars lose its atmosphere and water? 

 

1.1 Background motivation 

 

 
Figure 1. Energy spectrogram showing the integrated differential 

energy flux 𝜓(e, t)= ∫𝜓(𝑒, 𝑡, 𝜙, 𝜃) 𝑑𝜃𝑑𝜙. 

 

Figure 1 illustrates a typical energy spectrogram where the 

color axis is given by the differential energy flux 𝜓 () that 

measures the rate of transition of different ion populations as 

a function of given time (t) and energy (e), integrated across 
multiple solid angles defined by the azimuthal and polar 

angles (𝜃 and 𝜙), respectively. SWIA data typically measures 

𝜓() across a unique grid of (𝜃, 𝜙), and therefore, offers 
resolution of distinct ion escape pathways that can occupy 

different positions in space, while occupying the same energy 

levels at the same time [4]. However, due to demands on 
human precision and personnel time, such angle-specific trail 

studies, as well as studies connecting potentially overlapping 

multi-dimensional trails spanning different (𝜃,𝜙)  
trajectories have never been done at a large scale within the 

space science community. Given that millions, potentially 

billions of such trails exist over the spatial-temporal span of 
the multi-year MAVEN mission, this raises a classic “big 

data” challenge. 

 The compelling automation and signal processing 

challenges then rest in isolating these ion trails, which 
manifest as continuous, albeit noisy trajectories of ion 

populations across the differential energy flux spectra, 

denoted as 𝜓(𝑒, 𝑡, 𝜙, 𝜃), and thread potentially continuous 

trajectories that overlap in the (𝜃, 𝜙) space. 

 

1.2 Related work 

 

The primary hardship of automating individual ion 

population studies is lack of geometric measures to 
computationally identify, separate and track potentially 
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overlapping ion escape processes across distinct portions of 

velocity phase space (refer figure 2 (a)). 

 

Figure 2. (a) O+ fluxes projected to the MSE (x-z) plane, 

which are averaged over the y-direction [5]. The arrows show 

flux and velocity directions, while the colors label the 
magnitudes. (b) Schematic diagram of how an individual ion 

population within a local region of interest might evolve over 

time, spanning a range of polar and azimuthal angles. 
 

As such, large-scale studies on maven datasets have 

been limited to mostly correlation-based or otherwise purely 

statistical analysis [1-5] of data accumulated across 

thousands of ion escape processes. As such, no effort has 

been made towards connecting these aggregated maps (e.g. 

Figure 2(a)) to the evolution of individual ion populations 

(figure 2(b)) that constitute these escape processes across 

multiple scales of space, energy and time. On the other hand, 

within the last few decades, the geometric and morphological 

signal processing community has witnessed a burgeoning of 

feature extraction and automation techniques (e.g. [6-16] and 

references therein) that are highly applicable to big data 

scenarios such as this interdisciplinary and high-impact 

application. 

 
 

2. TECHNICAL APPROACH 

 

2.1 Key contributions 

 

In this work, we report the first steps towards developing a 
“computational microscope with tunable focus” that harness 

popular and recently proposed geometric signal processing 

techniques [14-16, 20] to enable this large-scale automated study 

across terabytes of SWIA data from the maven mission. 
Specifically, we propose a two-pronged approach to isolating 

Martian ion trails using the well-known Radon transform 

[14,15], as well as the geometric distance transform [16]. The 
Radon transform approach is similar in principle to the Ridge 

transform technique [20] recently proposed for isolating high-

energy plasmaspheric events within the earth’s Van Allen 
radiation belts. The significant difference between the Ridge 

transform method and our Radon-based methodology here is that 

the ion trail features, unlike the features selected in [20], are 

highly non-linear and significantly more prone to background 

noises. 

Figure 3:  original spectrogram 𝜓(𝑒, 𝑡, 𝜙, 𝜃) obtained  at (𝜃 = 

−33.64∘, 𝜙 = 213.75∘) over 24 hours (00:00 – 23:59 UTC of 

data). 

 

 

 Therefore, instead of applying the Ridge transform 

directly, we use the geometric distance transform [16,17] as a 

first step to isolate the main ionic trails and their spines and then 
apply the Ridge transform locally to detect microstructure within 

the trail morphology as applicable.  

 We provide relevant data-driven results and related 
discussion within the context of our technical approach in each 

step. 

 

2.2 Step 1: Detecting trail features using the Distance 

Transform 

 

To achieve our data analysis goal for detecting and 

disambiguating trails against the noisy background, we 

employ the distance transform, which is a well-known 

morphological technique [16,17], to isolate the persistent 

geometric features within the original image. As a case 

study we will illustrate our method over a 24-hour span of 

data for fixed (𝜃,𝜙) as given in Figure 3. In our 

implementation, the distance transform is an Euclidean 

distance operator applied to the gray-scale version of the 

spectrogram 𝜓 (𝑒, 𝑡, 𝜙, 𝜃). Figure 4(b) shows the result of 

applying the distance transform (DT) to the spectral image 

in Figure 3.  

 An alternative method is to employ the singular 

value decomposition (SVD) transform, which is a well-

developed signal processing technique that could remove 

noises effectively. However, by comparing the results 

obtained from distance transform (Figure 4(b)) and SVD 

transform (Figure 4(c)), we find that distance transform 

works better in noise removal. 
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Figure 4: Original spectrogram (Figure 4(a)). Distance 

Transform of the original spectrogram (Figure 4(b)). SVD 

transform of the original spectrogram (Figure 4(c)). 

 

2.3 Step 2: Detecting trails from the distance transform 

using binary thresholding and morphological operations 

 

We threshold the DT image to a geometric distance 𝜏 = 1 to 

create a binary mask of the original spectrum. This creates 

clearer noise-robust feature boundary to enable precise trail 
detection and trail isolation in subsequent steps. We select the 

value of 𝜏 = 1 based on extensive empirical observations across 

all available 64 combinations of (𝜃, 𝜙). We further adopt 

morphological “open” operations [18] to remove small holes 

inside each trail. 

After the binary feature extraction, the extracted 

trails are separated by gaps with each other. To detect 

individual trails, we employ a connectivity search [19] over 

the binary features and isolate any connected trail as an 

individual ion escape population. By mapping the isolated 

binary trails back to the original spectrogram in figure 3, we 

derive the final spectral trajectories of each ion population. 

Figure 5 shows the autonomously isolated trail trajectory of 

the second ion population in figure 3. 

         
Figure 5: Ion trail isolated from Figure 3. 

 

2.5 Step 4: Finding the spines of each detected ion trail  

 

The “spine” of each ion trail within the spectrogram is 

defined as the temporal trace of the highest flux activity 

within the trail feature. Mathematically, this may be 

expressed as:  

𝜓s (e(t), 𝜙, θ) = arg maxe 𝜓 (e, t, 𝜙, θ) 

Where 𝜓S (e(t), 𝜙, θ) denotes the differential energy flux across 

the temporal trace e(t) for a given spatial location, i.e., for a 

particular (𝜃, 𝜙). 

 Accordingly, 𝜓S (e(t), 𝜙, θ) can be obtained by 

finding the index of the maximum pixel of each column in trails 

found in original spectrogram (figure 3). By plotting these 

indices versus time, we autonomously generate the spines of 

original spectrogram in figure 3. 

Figure 6: Spines of the original spectrogram. 

 

2.6 Extracting microstructure within individual trails 

using Ridge transform.                        

 

We note that the trails isolated in the 24-hour case study are 

still extracted at the micro-level, i.e., the extracted features, 

including trail spines exhibit significant perturbations over 

energy across time even for a single (𝜃, 𝜙) combination. To 

extract trail microstructure over finer resolution in time, the 

distance transform method was not found to be adequate, 

since the geometric threshold 𝜏 = 1 was robust only across 

longer scales of time. Furthermore, when two trails overlap 

over time, the DT method was inadequate to disambiguate 

the trails. To accommodate this dilemma, we first isolate the 

macro trail features using steps 1-4 outlined above over 

longer ranges to isolate the major trail activity and then 

employ the Ridge transform [20], recently proposed to 

identify locally linear spectral features in the Earth’s Van 

Allen radiation belts, to identify potentially overlapped trail 

microstructure. In synopsis, the Ridge transform employs the 

well-known Radon transform [14,15] to detect and trace 

locally linear spectral elements by isolating angles of 

projection for which the spectral image accumulates 

significant energy. However, unlike the original application 

of the Ridge transform, ion trails may exhibit multiple peak 

maxima in the Radon domain, each corresponds to 

significant features within the trail microstructure. In 

particular, potentially overlapped trails will manifest as 

separate high peaks in the Radon domain. Figure 7 

demonstrates such a case. We detect the spectral features of 

each high peak in the Radon domain along a sliding 

rectangular window to disambiguate locally linear features 
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(“ridges”). Therefore, applying the Ridge transform across 

potentially multiple local maxima helps us disambiguate 

potentially cross-crossed trails as shown in Figure 7.  

Figure 7: Disambiguating trail microstructure by employing the 

Ridge transform across multiple peaks in the Radon domain. 

 

2.7 Connecting ion trails across different polar and 

azimuthal angles 

 

Our methodology so far has focused on the spectral image for a 

given (𝜃, 𝜙) combination. In practice, an ion trail can span 

across multiple ranges of (𝜃, 𝜙). To resolve this, we provide 

an alternative visualization of the ion trails in the (𝜃, 𝜙) 
domain instead of the energy spectral (e, t) domain. Figure 7 

shows a temporal snapshot of the total energy spectrogram 

given in figure 1, where the differential energy flux is 
integrated across all energy levels and the temporal window 

chosen is (11:55-12:45 UTC) for every (𝜃, 𝜙) combination. 

Each peak in this (𝜃, 𝜙) domain represents the cumulative 
flux of ion trails that share connected angular coordinates. 

The evolution of each peak can spin multiple (𝜃, 𝜙) 
combinations, which can then be mapped back to ion trails 
identified in the (e, t)-domain using techniques discussed in 

previous sections. 

       Figure 8: Location ion trails across the (𝜃, 𝜙) domain. 
 

2.8 Detecting trails from SVD transform 

 

We perform the same analysis (Section 2.2-2.5) using SVD 

transform and could also isolate trails from the original 

spectrogram (Figure 9). 

By comparing Figure 9 with Figure 5 (Ion trail 

isolated from DT), we can clearly see that some parts (~900-

1200) are missing in the SVD one. In other word, detecting 

trails using SVD transform may cause the loss of some 

information. While distance transform does not have this 

concern. 

Figure 9: One trail detected using SVD transform and 

techniques mentioned in previous sections 

 

3. RESULTS AND DISCUSSION 

 
Wherever applicable, we have provided relevant data-driven 

results and related discussion within the context of our technical 

approach in each step of Section 2. As a representative summary 
of our techniques, we provide a break-up of the energy spectra 

along five main ion populations isolated in the (𝜃, 𝜙) domain, 

in a 3-hour case study for the same date (March 6, 2015), 
which offers a half-way scale between the short (11:55-12:45 

UTC) and long (24 hours) observation windows. Results 

presented here are representative of typical case studies and 

future directions include large-scale study of ion trails across 
potentially terabytes of MAVEN mission date using the 

techniques proposed in this work. 

Figure 10: autonomously isolated ion populations showing 

distinct populations with one (population 5) consisting of 
potentially overlapped sub-populations, and three populations 

(1-3) potentially connected by the topological similarity across 

~3 hours of SWIA data recorded on March 6, 2015. Each ion 
population shown exhibits color proportional to differential 

energy flux integrated over all energy levels and observed 

continuously over ~2 minutes (to eliminate noise). To identify 
salient topological boundaries, we isolate the ion populations 

that exhibit integrated energy greater than 8000 eV/ (cm2 eV), 

which serves as a tunable threshold to discover salient 

topological features of dominant ion populations within a local 
region in phase space.  
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