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ABSTRACT 
 
How to estimate accurately the homography is always a 
challenging problem in computer vision. In the reported 
literature, the measurement error of the image points is 
usually assumed to obey isotropic Gaussian distribution. 
However, real data very seldom follows this assumption. 
This paper proposes an estimation of homography under the 
assumption of image point errors following elliptical 
distribution, which is more coincident with real data. In the 
proposed method, the adaptive-scale elliptical residual 
kernel consensus (ASERKC) robust estimator is used to 
filter out inliers which are utilized to compute homography. 
Then, the elliptical weighted L-M (EW L-M) algorithm is 
optimized the homography. The experimental results show 
that the proposed method may present a more accurate 
homography. Especially when we applied it to incremental 
structure-from-motion (SFM), we find that the exact 
homography matrix is useful to select a better initial image 
pairs which can help obtain a more complete 3D points 
cloud. 
 

Index Terms— Homography, Elliptical distribution, 
Adaptive-scale elliptical residual kernel consensus, Elliptical 
weighted L-M 
 

1. INTRODUCTION 
 
In the field of computer vision, the homographic matrix 
represents the corresponding relationship in any two images 
of the same planar surface in space [1]. Homography 
estimation is required in many computer vision tasks like 
image stitching [2], 3D reconstruction [3], camera 
calibration [4], scene understanding [5] etc. So estimating an 
accurate homography is a fundamental and crucial issue [6], 
which attracts a large number of researchers. 

A number of algorithms [7][8][9] for estimating the 
homography were proposed in previous studies. Feature-
based homography estimation is a hot research topic now 
[20]. The Harris corner [10], SIFT [11], SURF [13] is a 
commonly feature used in homography estimation. In order 
to make the process of homography estimation more robust, 
LMeds [14], RANSAC [15], MLESAC [16], ASRC [17], 
ASKC [18] are utilized to deal with the data containing 

outliers. In addition, many deep neural networks methods, 
like [30] [31] [32], have emerged. 

 Most of algorithms assume that the measurement error 
obeys isotropic Gaussian distribution. But real data very 
seldom satisfy this assumption [19]. The covariance 
weighted MLESAC (CW MLESAC) [19] was proposed to 
solve the problems in which the measurement error obeys 
anisotropic Gaussian distribution. However, the non-
Gaussian distribution problem still remains to be solved. 

In probability and statistics, elliptical distribution 
generalizes the multivariate normal distribution. And it 
includes a lot of symmetric distribution like the multivariate 
t-distribution, multivariate stable distribution. And it is 
commonly used in statistics and mathematical economics 
[21][22][23][24]. However, elliptical distribution is rarely 
applied to estimate homography up to now. 

In this paper, we assume that the measurement error of 
image feature points follows the elliptic distribution. This 
assumption is very reasonable because the elliptical 
distribution contains multivariate normal distribution, which 
makes it not conflict with traditional assumptions. At the 
same time, the elliptical distribution also contains many 
other distributions which make it closer to the actual 
distribution of error. 

Based on the assumption above, we present a novel 
adaptive-scale elliptical residual kernel consensus 
(ASERKC) robust estimator, which integrates CW 
MLESAC and ASKC algorithm. In addition, we also 
propose an elliptical weight L-M (EW L-M) method to 
optimize results of ASERKC. The experiment shows our 
method can obtain more accurate homography matrix than 
state-of-art methods such as LMeds + L-M, RANSAC+L-M, 
MLESAC+L-M, ASKC+L-M, CWMLESAC+CW L-M and 
Unsupervised Deep Homography [32].  

The paper is structured as follows: Section 2 describes 
ASERKC robust estimator and EW L-M algorithm in detail. 
And the experiment results on both synthetic and real data 
sets are presented in Section 3. Finally, a conclusion is 
provided in Section 4. 
 

2. PROPOSED METHOD 
 
In this section, a brief introduction of elliptical distribution 
is given in the first part. Then the proposed method is 
introduced in details.  
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2.1. Elliptical Distribution 
 
The definition of elliptical distribution is as follows: 
Definition: A random vector X has an elliptical distribution 
if its characteristic function ϕ satisfies the following 
functional equation (for every column-vector t): 
 ( ) ( )T

X t t tµφ φ− = Σ   (1) 

Where μ is the location parameter and Σ  is nonnegative-
definite matrix which is proportional to the covariance 
matrix if the latter exists [25][26]. The notation 

( ), ,pX E µ φΣ  is commonly used to indicate that X obeys 
elliptical distribution. 

The nonnegative-definite matrix can be replaced by the 
covariance matrix because the ratio between them is a 
constant [21]. There are a lot of methods [19][27] to 
estimate the covariance matrix for different features. 
 
2.2. Adaptive-scale Elliptical Residual Kernel Consensus 
 
The elliptical distribution is a broad family which contains 
many other distributions. The nonparametric method which 
was used in ASKC method can greatly reduce the impact of 
different distributions. But it did not concern the distribute 
information. The proposed method integrates CW MLESAC 
and ASKC algorithms to estimate an accurate result.  

The ASERKC estimator can be written as: 
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Where Ĥ  is the estimated homography. N is the number 
of data points. 

Ĥh  is the bandwidth that varies with Ĥ . And 

ˆ,i Her  is the elliptical residuals, which can be written as:  
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Here, ' 'ˆ
i i iε X X= − is the traditional residual. 1λ , 2λ  and 

U are the eigenvalues and eigenvector matrix of the 
covariance matrix respectively. The elliptical residual 

formula represents an ellipse, while the eigenvalues of 
covariance is the square of the long and short axes.  

As shown in Fig.1, the elliptic residual formula can be 
considered as a combination of the following two steps: 
Firstly, the traditional residuals are rotated by the 
eigenvector matrix U. Then the weights, which are 
determined by the eigenvalues, are added to the result of 
first step. The purpose of the first step is to eliminate the 
correlation between the variables in the traditional residuals. 
And the second step, on the one hand, can eliminate the 
scale in different axes. On the other hand, with a small 
weight can increase the tolerance of the residuals in the long 
axis direction, which avoid the inliers with larger errors 
being wrongly classified as outliers. 

Then Just like the ASKC, a TSSE procedure was used 
to find the inliers and their scale. In order to estimate the 
scale, TSSE method need to find the peak and valley in 
residual density. As shown in Fig.2, the traditional residual 
formula does not consider the distribution of the 
measurement error. So the boundary between inliers and 
outliers is always vague. But the elliptical residuals can 
make the valley become more clear than traditional residuals. 
So the proposed method can always select good inliers.  

In addition, it is worth to mention that our method does 
not need a specific error tolerance which makes it more 
convenient to apply. 
 
2.3. Elliptical Weight Levenberg—Marquardt 
 

The point transposed by ASERKC’s result is closer to 
the real position but may be farther from the measuring point.  
L-M and CWL-M are more concerned with the distance 
between the estimated point and the measurement point. So 
they can’t exploit the potential of ASERKC. 

To solve this, we modified the objective function as: 
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We named the new method as EW L-M because it adds 
the elliptic weight to traditional objective function. 
Experiments show that the combination of ASERKC and 
EW L-M can estimate a more accurate result. 
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Fig.1. Workflow of the elliptical residuals 
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(a)                                           (b) 

Fig.2. Peaks and Valleys of different residuals: (a) the traditional residual 
(b) the elliptical residual 

2303



3. EXPERIMENT AND RESULTS 
 
In order to analyze the accuracy and robustness of the 
proposed method, both synthetic data and real image were 
used in the experiment. The performance of the proposed 
method is compared with state-of-art methods like LMeds + 
L-M, RANSAC+L-M, MLESAC+L-M, ASKC+L-M and 
CWMLESAC+CWL-M. Then we applied it to the process 
of initial image pairs selection in the incremental structure-
from-motion (SFM) system. 
 
3.1. Evaluation Criteria 
 

In this paper, two criteria were used to evaluate the 
accuracy of the estimated homography. The first is the root 
mean squares error (RMSE) of the re-projection error which 
is defined as follows: 
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Where ( )',i iX X  are the true corresponding points. And 

N is the number of correspondence. estH  is the estimated 
homography. 

The second is homographic 2-norm [28] which is defined 
as: 
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Here r represents the point in the first image. S is the 
projection region of a plane in the first image. estH  is the 
estimated homography. trueH  represents the ground truth. 

Both two criteria focus on the difference between the 
estimated homography and the ground truth. The first is used 
to evaluate the results of the synthetic dataset and the second 
is for the real image experiment results. Because the 
synthetic dataset can provide the ground truth of 
correspondence but real image can’t. 

 

3.2. Synthetic Dataset Experiment 
 

The purpose of using synthetic dataset was to analyze 
the accuracy of the proposed algorithm under different inlier 
ratios, different noise levels and different error distribution. 

In this paper, the synthetic dataset is generated in a 
similar way to [19]. But the bivariate Cauchy noise were 
also added to the image points which is different with [19]. 
Some results of Gaussian noise and Cauchy noise are given 
in Fig.3and Fig.4, respectively. 

As shown in Fig.3 and Fig.4, the error of LMeds is 
extremely large when the inlier ratios are less than 50%. 
This is because LMeds is unable to handle the data that have 
more than 50% outliers. As can be seen from the Fig.3, 
errors of CW MLESAC + CW L-M and ASERKC + EW L-
M always have a lower magnitude than others. This happens 
because both two methods considered the distribution 
information of measurement error. But under the Cauchy 
distribution (as shown in Fig.4), ASKC+L-M’s result is 
better than CWMLESAC + CWL-M when the inlier ratio is 
more than 0.7. This demonstrates that the assumption of 
CWMLESAC + CWL-M can’t properly handle the case that 
the measurement error does not follow Gauss distribution. 
Although our hypothesis is broader than the Gaussian 
distribution, the proposed method can still obtain a better 
result when the measurement error obeys the Gaussian 
distribution as shown in Fig.4. This is because elliptical 
distribution is any member of a broad family of probability 
distributions. And the proposed method can automatically fit 
any ellipse distribution. Besides, it can be seen that the 
accuracy of ASERKC + EWL-M is always higher than 
CWMLESAC + CWL-M and ASKC+L-M at Cauchy 
distribution.  
 
3.3. Real Image Experiment 
 
In order to test the effect of our method in the real images, 
several pictures which come from the Oxford VGG Affine 
Covariant Regions dataset [28] were used. The Oxford VGG 

 
Fig.3. The RMSE of LMeds + L-M, RANSAC+L-M, MLESAC+L-M, 
ASKC+L-M, CWMLESAC+CWL-M and ASERKC+EW L-M under 
Gaussian noise in different inlier ratios and noise level is (a) 0.1 (b) 0.5 

 
Fig.4. The RMSE of LMeds + L-M, RANSAC+L-M, MLESAC+L-
M, ASKC+L-M, CWMLESAC+CWL-M and ASERKC+EW L-M under 
Cauchy noise in different inlier ratios and noise level is (a) 0.1 (b) 0.2 
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Affine Covariant Regions dataset contains viewpoint and 
scale changes. So it is widely used to evaluate the 
performance of homography estimation algorithms. 

The real image experimental process is as follows: 
First, the SIFT algorithm was adopted to extract the 

feature points. And the covariance matrix of each feature 
point was estimated by the method of [18]. Then, the KNN 
algorithm was used to get the initial correspondence. After 
that, the LMeds + L-M, RANSAC+L-M, MLESAC+L-M, 
CW MLESAC+CW L-M, ASKC+L-M and ASERKC+EW 
L-M were used to estimate the homography respectively. In 
order to compare the results estimated by Unsupervised deep 
homography, we add the pictures used in real image 
experiments to the test-set. Then compare the results with 
proposed methods. Results are shown in Fig.5. 

 
Fig.5. The homographic 2-norm L2 of LMeds + L-M, RANSAC+L-M, 
MLESAC+L-M, ASKC+L-M, CWMLESAC+CWL-M and ASERKC+EW 
L-M in real image pairs (a) graffiti 1to2 (b) graffiti 1to3 

As can be seen from Fig.5, the CWMLESAC + CWL-M 
can’t continue to give a precise result compared to other 
methods in the real image. But ASKC+L-M can do well. 
This is because ASKC focuses on the residual information 
of the image and has no limitation on the distribution of the 
measurement error. Therefore, it can obtain a better result in 
the real image experiment. However, it is clear that the 
proposed method ASERKC+EW L-M is superior to ASKC. 
Because we estimate it based on a more reasonable error 
distribution. In addition, it can be seen from the Fig.5 that 
the results of Unsupervised deep homography are not as 
good as those traditional methods. This may be due to the 
fact that the traditional method can still do well based on the 
high-precision SIFT feature points. 

Both the simulation experiment and the actual image 
experiment show that it is more reasonable to assume that 
the measurement error obeys the elliptic distribution, and the 
new method based on this assumption is more effective. 
 
3.4. Reconstruction Experiment 
 
In the incremental SFM, the selection of initial image pairs 
is extremely important. Most of SFM techniques need to 
compute the homography matrix to find a wide baseline 
image pair. Therefore, accurate homography matrix can 
really help to obtain a more suitable initial image pair and 
improve the accuracy of the 3D structures. 

The OpenMVG C++ library [29] provides a vast 
collection of structure-from-motion techniques which make 
it easier to use. In this section, the proposed method is used 
to replace the part of the homography matrix estimation in 
the OpenMVG library. Then compared it with the method 
used in the library. 26 photographs of wooden calendars 
were used in this experiment. The results are shown in Fig.6 
and Fig.7. 

As can be seen in Fig.6, the baseline of the initial 
image pair selected by our method is significantly larger 
than the image pair selected by the traditional method. 
Besides, as red part shown in Fig.7, the 3D points cloud 
calculated by our method is more complete.  

 
(a) 

 
(b) 

Fig.6. Initial image pair in structure-from-motion (a) choosed by 
OpenMVG library method (pairs 1 and 2), (b) choosed by ASERKC+EW 
L-M method (pairs 1 and 3). 

 
(a) 

 
(b) 

Fig.7. The results of structure-from-motion using different 
homography estimation method (a) The OpenMVG’s method  (b) The 
ASERKC + EW L-M method 

4. CONCLUSION 
 

In this paper, we proposed the adaptive-scale elliptical 
residual kernel consensus(ASERKC) robust estimator and 
elliptical weight L-M (EW L-M) method to estimate the 
homography for the problem that the measurement error 
follows elliptical distribution. Compared with the state-of-
the-art, the proposed method can estimate a more accurate 
model and can deal with different kind of distributions. We 
also demonstrate the effectiveness of the proposed method 
for incremental SFM techniques.  
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