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ABSTRACT

In this paper, we propose a method of reconstructing the depth
map of a set of multiview images from the epipolar plane
images (EPIs) of multiview Images. Our method involves
two steps: finding support points and estimating depth. First,
we propose to include a consistency term and a smoothness
term in the objective function for edge point detection, where
the consistency term is used to identify edge points and the
smoothness term is applied to mitigate false edge detection
due to light density variations caused by viewpoint changes.
Then, based on the detected edge points, a depth map can
be estimated by solving a energy minimization problem, in
which a line uniformness term and a matching error term are
introduced to ensure the line traces estimated from EPIs for
depth estimation match the colors of edge points well. The
depths of non-edge points are then estimated by introducing
an additional prior term. In order to speed up our algorithm,
the depth estimation problem is aggregated by a winner-take-
all strategy. Experiments show that our method outperforms
the state-of-the-art schemes in reconstructing depth map with
fine details.

Index Terms— Depth reconstruction, disparity estima-
tion, epipolar plane images, multiview image processing.

1. INTRODUCTION

In recent years, light field (LF) images [1] [2] have drawn
much attention as a powerful approach for disparity/depth
estimation as LF multiview images provide additional infor-
mation for disparity estimation. There are several ways to
acquire LF images, such as camera arrays [3], lenslet arrays
and coded aperture techniques [4]. In this paper, we use
the dataset in [5] collected by mounting a consumer digital
single-lens reflex (DLSR) camera on a motorized linear stage.

There are multiple approaches for disparity estimation,
such as monocular approaches [6] which usually require ad-
ditional prior information like object shapes, and binocular
approaches [7] which find correspondences between the left-
view and right-view images and can often lead to inaccurate
depth estimation due to limited information. Another way is
multi-view stereo matching [8] that can more easily find the
correspondences between multi-view images since it can pro-
vide additional views of images. In this paper, we propose to

reconstruct depth image from epipolar plane images (EPIs) as
an extension of multi-view stereo matching [5, 9–13].
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Fig. 1. Illustration of producing EPIs from multiview images, where
the number of EPIs is equal to the height of the original image and
the height of EPIs is equal to the number of original images.

For EPI image processing, the method proposed in [9]
is among the first to extract EPIs to reconstruct depth maps.
However, it is not robust for real-world scenarios due to light
intensity variations, resulting in noisy and sparse depth maps.
By dividing an EPI into several tubes, the method proposed
in [10] can obtain a more compact representation of a 3D light
field. The methods in [11] [12] calculate local structure ten-
sors to estimate an initial depth map, then apply total variation
optimization to construct more precise depth. These methods,
however, consume high computation and memory costs, mak-
ing it impractical for processing high-resolution images. The
method in [12] filters out occluded pixels based on a bilateral
metric on the surface metric. Although it can do a good job
for occluded parts, it is constrained to small field view and
cannot be applied to real scenes. The coarse-to-fine method
in [5] finds support points in different levels and estimates
their depths so as to estimate depth precisely. However, it
consumes high computation cost and may not well reconstruct
depth details in some areas.

Our method also reconstructs depth maps from EPIs
which are captured densely along a linear path equidistantly
as illustrated in Fig. 1, where Cx (x = 1, 2, ...) indicate the
views from which the pictures are taken. Then, the pictures
are piled up in order along s. We randomly select a fixed

2292978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



point on line v, denoted by v∗, then the s − u plane con-
stitutes an EPI image. As show in (1), the depth of every
pixel corresponds to the slope of liner trace in the EPI. By
estimating the slope (i.e., the disparity) d of linear trace, we
can calculate the depth z for each pixel by

z =
f ∗ b
d

(1)

where f is the camera focal length, d is the disparity between
a pair of adjacent images, and b is the metric distance for each
pair of adjacent images. Because b and f are already known,
our main task is to estimate d (i.e., the slope of a line trace).

For convenience, we denote a light ray as r = L(u, v, s),
where v indexes the EPI images and (u, s) represents a point
in an EPI image.

2. DEPTH RECONSTRUCTION METHOD

We propose a new approach to reconstruct a depth map from
EPI images, which are produced by sampling a densely cap-
tured multiview image cube along a line (say, the center line)
as shown in Fig. 1. Our method involves two steps: finding
support points and estimating depth. To find support points,
we propose a cross detector constrained with a smoothness
term to reliably detect edge pixels as support points and avoid
wrong detections due to light intensity variations at the same
corresponding points between various view-point images. For
depth estimation, we first estimate the depth on the detected
support points by using a photo-consistency term and color-
entropy. Then, based on the estimated depths of nearest sup-
port points, we can estimate the depth values of non-support
points accordingly.

2.1. Finding support points

As shown in Fig. 2, we propose a two-step scheme to identify
support points. In the first step, we determine a support point
by the cross detector. As can be observed from the EPIs in 2,
there are two types of edges in EPIs: the horizontal edges and
the vertical edges. The horizontal edges are also the edges
appearing in the raw RGB images. In certain EPI images,
the edge slope, however, can be too small to detect because
horizontal edges in the RGB image may not be sharp enough.
Therefore, it is hard to find the edges just solely using the
horizontal edge detector. In order to address this problem, we
utilize the following cross detector proposed in our previous
work [13]:

Ci
conf (u, s) =

∑
(u′,s′)∈(V (u,s)∪H(u,s))

‖E (u, s)− E (u′, s′)|2

(2)
The cross detection function is also called the confidence

term, where superscript i represents the i-th EPI, V (u, s) and
H(u, s) are the vertical and horizontal neighborhoods of pixel
(u, s), respectively, and E(u, s) represents the color of pixel

(u, s). For the cross detection results, we define matrix Craw

with entries indicating these detected edge points:

Craw =


0 1 ... 0 0
0 1 ... 1 1
... ... ... ... ...
1 0 ... 0 0

 (3)

where the i-th column represents the i-th pixel in an EPI, the
n-th rows means the n-th EPI, and the binary values in the
matrix signify whether there are edge pixels detected, where
a value of 1 indicating an edge pixel, and 0 otherwise. Note,
a single row in Craw represents whether there exist edges in
the center line of an EPI.

Although we can determine edge points using the cross
detector, there can still be some wrongly detected edge pixels
caused by unavoidable light intensity variations, because the
multi-view cameras take pictures from the same scene in dif-
ferent views making the received light intensity different. To
mitigate this influence, we propose a new smoothness term.
As shown in Fig. 2(a), true edges are continuous and usually
can be successfully detected by the cross detector from se-
rial EPIs. In contrast, should the edges be produced by light
intensity variations, it is unlikely to consistently find the cor-
responding edges in the next EPIs. We therefore define the
following smoothness term to filter out the wrong edges:

Csmooth = κ
(u,s)∈(Vi−1=1∪Vi+1=1)

‖E (u, s)− E (u∗, s∗)‖2

(4)
where i is the index of EPIs.

Equation (4) means if there is an edge in the i-th EPI,
we set an 1 × 3 smoothness window for the (i + 1)-th EPI
to calculate the degree of confidence with the edges in the i-
th EPI. We set a threshold ε, if Csmooth < ε, then κ (·) =
1, meaning that the edges in the i-th EPI exist confidently.
Should edges in Csmooth not satisfy (4), we set κ (·) = 0.

2.2. Depth estimation for support and non-support points

After identifying support points, we first estimate the depths
of support points, and then estimated the depths of the re-
maining pixels based on the depths of support points.

Before depth estimation, we select fix s on EPI image,
where s means the s-th image to be reconstructed. The dis-
parity dN of a 3D scene point between two images is quan-
tized intoN levels, whereN = 256. As a result, for a support
point (u∗, s∗) in an EPI image as shown in Fig. 3, we define
the pixel set R along the red line as a function of dN :

R (u∗, dN ) = {E (u∗ + (s− s∗) dN , s) |s = 1, 2, ...} (5)

There are 256 kinds of pixel set R, since the value of dN
ranges from 0 to 255. In order to find the best-match dN for
the support point, we define a photo inconsistency costDincon

as follows:

Dincon = αDline + βDmatch + γDprior (6)
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Fig. 2. Illustrations of finding support points using the cross corner detector. There may exist wrong support points due to light intensity
variations caused by viewpoint change. For example, in EPI i, we can detect a support point; however, in EPI i + 1, the support point is
missing because EPI i + 1 is not influenced by light in that view. In the original image, there exists no corner at all. In order to solve this
problem, we add a smoothness term based on the assumption that all corner points’ colors are continuous, as shown in (b).

whereDline represents the line uniformness distortion,Dmatch

the line color-matching distortion, Dprior the disparity esti-
mation distortion for a non-support point based on the priors
of its nearest support points, and α, β, and γ the weights
for the three terms, respectively. In our method, the depth
of a support point is estimated by minimizing the first two
distortion terms, Dline and Dmatch (i.e., γ = 0), whereas the
depth of a non-support points are estimated based on all the
three terms.

The first term Dline represents the line uniformness dis-
tortion. It means that in a single line trace in an EPI image, as
illustrated in Fig. 3 all the corresponding pixels representing
the same point in a 3D scene are taken from different view-
points, making the color in the same light trace slightly dif-
ferent due to the viewpoint change. In order to make depth
estimation more accurate, we treat all pixels in a candidate
line trace R in a whole rather than individual pixels. We de-
fine theDline term based on the entropy of the pixel values on
line trace R as follows:

Dline = −
∑

(u,s)∈R

Pr {E (u, s)} logPr {E (u, s)}, (7)

which is used to measure the uniformness degree of pixels on
line traceR. The more uniform the pixel colors in a line trace,
the smaller Dline.

The second term Dmatch is used to find the line that best
matches a support point E (u∗, s∗) in pixel color by calculat-
ing the color matching error between the support point and all
the pixels in set R as follows:

Dmatch = ϕ


∑

(u,s)∈R
|E (u, s)− E (u∗, s∗)|

|R|

 , (8)

where
ϕ(s) = 1− e−

s2

2σ2 . (9)

Fig. 3. Illustration of uniformness of pixel values along an edge.

As for the term Dprior, when we estimate the depth for a
support point, we set γ = 0, meaning this term is ignored. Af-
ter all the depths for the support points have been estimated,
we estimate the location where depth changes gradually or
remains unchanged. The depths of support points are hori-
zontally propagated to the less detailed non-support points to
obtain a dense reconstruction.

Denote the disparity in a non-support pixel with unknown
depth as d (u, s), assuming that d (u, s) satisfies a Gaussian
distribution centered at the estimated disparity dest (u, s) and
variance ε.

Dprior = − log

{
φ+ exp

(
− (d− dest)2

2ε2

)}
, (10)

where, φ is a positive value to avoid taking logarithm on zero.
In a region without any support points, its depth changes

gradually or stays unchanged. Therefore for a pixel E (u, s∗)
with unknown depth, we find the two nearest support points
Eleft (uleft, s

∗) and Eright (uright, s
∗), and linearly interpo-

late the expected disparity E (u, s∗) as follows:

µ(u, s∗) =
u− uleft

uright − uleft
d (uright, s

∗)+
uright − u

uright − uleft
d (uleft, s

∗)

(11)
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Fig. 4. Comparison of our algorithm with our previous work [13] and Kim et al.’s method [5]. Our method can well perverse more details.

Fig. 5. Example of successful depth reconstruction even if there
exist occlusions in the original multiview images.

In this step, we can search the disparity in a small range to
save time because the depth changes gradually or stays un-
changed for non-support points: [dleft − ξ0, dright + ξ0].

In total, we estimate the depth by minimizing the term
Dincon. At first, we set γ to zero and estimate the depths
of support points. In this step, we use the winner-take-all
strategy for computational efficiency. After all the depths in
the support points are obtained, we can estimate the depths in
less detailed regions.

3. EXPERIMENTAL RESULTS

In order to evaluate the performance of our method, we com-
pare our method with our previous work [13] and the method
proposed in [5], which are state-of-the-arts for reconstruct-
ing depth maps from EPIs, on the light field dataset proposed
in [5].

We first compare the result in the whole. As shown in

Fig. 4, where the first row shows the original images, the sec-
ond, third, and fourth rows show the results obtained by our
algorithm, our previous work [13] and the method proposed
in [5], respectively. As show in the first column of Fig. 4,
our algorithm can reconstruct the edges of tires and axles of
a bike. However, our previous work [13] can just find edges
of tires, whereas the result of method proposed in [5] shows
blurry edges of tires. As shown in the third column of Fig.
4, we can find that for our algorithm, the edges of the statue
are clear and their depths are different. The method proposed
in [5] fails to reconstruct the edges and different depths. In
the final column, there are small gaps in the sofa and their
depth is different. The result shows that only our algorithm
can successfully find these gaps and reconstruct their depth
precisely.

Another challenging problem in depth reconstruction is
that occlusion will influence the result of the depth map esti-
mation. Fig. 5 shows that a number of images are occluded by
pedestrians, which causes information loss. However, the re-
sult shows that our algorithm can reconstruct depth map pre-
cisely even if the original maps are occluded by other objects.

4. CONCLUSION

In this paper, we proposed a novel method to reconstruct
depth images from EPIs. The proposed smoothness term can
mitigate the influence of light variations so as to find true sup-
port points. Besides, we also proposed a uniformness term in
the cost function to estimate pixelwise depth map. By using
these two trick, we find the depth in the map is more reliable
and the edge is more precise than the compared methods.
Experimental results show that our method can reconstruct
more accurate and detailed depth maps.
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