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Abstract—With the boosting requirements of realistic 3D 

modeling for immersive applications, advent of the newly-

developed 3D point cloud has attracted great attention. 

Frankly, immersive experience using high data volume affirms 

the importance of efficient compression. Inspired by the video-

based point cloud compression (V-PCC), we propose a novel 

point cloud compression algorithm based on polynomial fitting 

of proper patches. Moreover, the original point cloud is 

segmented into various patches. We generated corresponding 

depth maps via projection of all the patches by focusing on 

geometry information. Instead of directly compressing the 

absolute values, we utilized proper polynomial functions to fit 

in each patch to obtain the differences. Finally, it is satisfying 

to note that the fitting function effectively represents the patch-

wise geometry information. Moreover, new depth maps are 

obtained with extremely small and stable values, which are 

more suitable for video-based compression. Different patch-

wise fitting parameters are preserved and coded using lossless 

compression through the open source PAQ project. The 

proposed approach achieves a noticeable improvement in the 

compression efficiency while maintaining point cloud quality. 

 

Index Terms— point cloud compression, V-PCC, geometry, 

polynomial fitting, patch generation 

 

 

I. INTRODUCTION 

The advancement of scanning technology as well as the 

growing demand for immersive media have led to an 

increase in the importance of 3D data format in various 

applications such as machine vision [1], auto-navigation [2], 

and medical [3,4]. Realistically, the point cloud has 

succeeded in recording and describing three-dimensional 

objects and scenes, based on its newly-developed 3D media 

format that assists in recording the point geometry 

information related to attribute information. 

A high precision of the point cloud offers a high data 

volume, and when point cloud information is transmitted 

and processed, the data efficiency usually does not perform 

well. Moreover, the irregular and scattered point cloud data 

increases the complexity of the processing algorithms and 

takes up a lot of computing space. Therefore, a proper 

compression algorithm is quite essential in the point cloud 

applications to overcome these problems. 

Numerous studies have explored point cloud compression. 

Geometry and attribute information are the main properties 

of the point cloud, which usually coded separately. For 

attribute compression, the genetic algorithm based intra 

prediction is introduced [5]. Moreover, a global projection 

algorithm that maintains a correlation of the color attribute 

associated with the nearby points in the 3D space is also 

introduced [6] for the accuracy of the attribute. However, it 

is obvious that the geometry information is the basis for 

attribute rendering. The octree structure can be utilized to 

separate the point clouds and then entropy encode the 

corresponding leaf nodes to compress the geometry 

information [7-9]. Moreover, a binary tree structure can also 

be used to segregate the unorganized points into block 

structure and eliminate the redundancy of geometry 

information through residual coding [10-12]. Besides, we 

can cluster the points into a series of hierarchical point 

clusters and traverse each cluster from top to bottom. The 

residual between the traversed point and the top point will 

be encoded to perform the geometry compression [13,14]. 

Moreover, a global projection algorithm can convert the 3D 

data into 2D data and compress geometry information using 

2D codecs [6]. This dimensionality data reduction can 

effectively improve the processing speed and efficiency. 

In the last few years, the Moving Picture Experts Group 

(MPEG) organization has proposed a standardized 

compression test model for the dynamic point cloud. The 

main principle is to convert 3D point clouds to 2D video 

sequences and employ existing video coding algorithms, 

such as HEVC, for further compression [15]. In this test 

model, a point cloud is first divided into different patches, 

and they are projected onto 2D grid based on their surface 

normal. Then, certain 2D frame is formed via proper 

packing algorithm, and the process is performed for each 

point cloud in this dynamic sequence. Therefore, this video-

based compression method shows a state-of-the-art 

outstanding performance. 
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In the present study, we propose a polynomial surface 

fitting algorithm to improve the performance of a V-PCC 

algorithm and achieve better compression results while 

maintaining point cloud quality. This paper is organized as 

follows. In Section II, the V-PCC algorithm is introduced. In 

Section III, we present details of polynomial fitting of depth 

maps and compression. In section IV, we demonstrate the 

experimental conditions and the results. Section V 

concludes the entire paper. 

II. V-PCC 

The principle behind the V-PCC method is to utilize 

existing video codecs to compress the geometry and the 

texture information of dynamic point cloud sequences. At 

first, the 3D object is divided into patches of different sizes 

mainly based on the normal vectors of the points that belong 

to these patches. Then these patches are projected in 

different directions according to the main normal vector of 

each patch to generate a padded depth map. After the 

projecting and padding processes, two video sequences that 

record the geometry and texture information from point 

cloud are generated and compressed using existing video 

codecs. Figure.1 provides an overview of the process used in 

converting the 3D object into 2D images. 

 
Fig.1 Convert Point Cloud into Video 

 

In the next section we describe the patch generation 

module and the projection module in detail, and they are 

used in our proposed compression method.  

A.  Patch Generation 

The main effect of patch generation is to reduce the 

amount of data involved in every process and to improve the 

efficiency of compression obtained by dividing the complete 

point cloud objects into smaller scale point clusters. This 

process mainly includes two steps: initial division and fine 

division 

In initial division, the normal vector is calculated for each 

point [16]. A rough division is obtained, associating each 

point with one of the following six oriented planes. This is 

done by maximizing the dot products of the point normal 

vectors and the plane normal vectors. The aim is to ensure 

that each point is associated with the closest normal. More 

precisely, the planes are defined using the following normal 

vectors: 

(1.0, 0.0, 0.0),  (0.0, 1.0, 0.0),  (0.0, 0.0, 1.0), 

(-1.0, 0.0, 0.0),  (0.0, -1.0, 0.0),  (0.0, 0.0, -1.0) 

In fine division, clustering of adjacent points and 

extraction of connection components are carried out, and we 

achieve this process using the proximity search of the kd-

tree structure. Moreover, the connection component 

extraction is mainly used to process the segmentation of the 

points at the boundary. 

B.  Projection 

The projection process aims at mapping the extracted 

patches onto a 2D grid for video coding. A simple 

packaging strategy is applied that repeatedly tries to insert 

the segmented segments in a grid of size W × H, where W 

and H are user-defined parameters that correspond to the 

length and width of the geometry/texture image to be 

encoded, respectively. The direction of projection is 

determined using the principal normal vector of the plane 

with which the segment is associated during the partitioning 

process. the effect of projection has been presented in figure. 

2. 

 
Fig.2 Projection Effect 

 

Via segmentation and projection, the point cloud object is 

transformed into depth maps to achieve video generation, 

padding, and other processes. However, the depth values are 

directly obtained through a spatial coordinate projection of 

the point cloud. As the depth values are high, these are not 

convenient for video compression. In the next section, we 

introduce the method of applying polynomial fitting to 

reduce the data volume and optimize the depth map. 

 

III. POLYNOMIAL FITTING 

Surface fitting can generate the equation to describe the 

surface based on the position of point information. 

Moreover, surface fitting can replace the seemingly random 

distribution with a regular expression to optimize the 

information storage process. Besides, surface fitting can also 

be employed to obtain smooth samples in remote sensing 

scanning [18] and machine learning [19] where we decide to 

use 3D modeling. The depth map generated by the V-PCC is 

projected from the point cloud segment, and the depth 

values maintain good surface continuity and regular surface 

distribution. Based on these benefits, we can utilize surface 

fitting expression to accomplish the prediction and reduce 
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the data volume by encoding residuals for the predicted and 

original values [17]. Moreover, we choose polynomial as the 

fitting expression because of its simple operation and 

effective fitting effect.  

A.  Polynomial Fitting 

Polynomial fitting is a surface fitting method to represent 

each fitting polynomial using several parameters. Through 

least squares, we can fit these parameters by constantly 

inserting real point values in our assumed expressions so as 

to minimize the sum of the squares of the differences 

between the real depth values and the estimated depth values,  

For example, we assumed that variable Z has the following 

relationship with variables x and y: 
yx ba +=Z  

Using least squares, we can fit the values of a and b if we 

have enough values for x, y, and Z. In this way, we consider 

that the three-dimensional coordinates approximately satisfy 

the geometry relationship, and these are described by the 

polynomial that contains a and b parameters. Figure 3 shows 

the effect of the polynomial approach to estimate the spatial 

relationship among a series of points. The colored surface is 

the prediction result that assumes these points to be on the 

fitting surface. 

 
Fig.3  Polynomial Fitting Effect 

 

B.  Polynomial Fitting in V-PCC 

As described in section II, patches of different sizes are 

generated after patch generation. Generally, these point 

cloud segments are quite regular and we can use polynomial 

fitting to predict the point coordinate information [20]. 

The number of polynomial terms depends on the 

complexity of the point cloud segment. Generally, a 

segment is small and a polynomial with nine terms is 

enough for prediction. In this model, we predict that the 

relationship of variables (x, y, z) approximately satisfies the 

following expression: 
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Where, Z(x, y) is the value of depth that was predicted at 

position (x, y). And {p0, p1, p2, p3, p4, p5, p6, p7, p8} are 

the parameters we need to fit. 

After polynomial fitting, we can use these parameters to 

predict the depth value of each position. Next, we calculate 

the residuals between the predicted value and the original 

value. Further, we project residuals to generate residual 

video sequence, and the new video sequence is compressed 

instead of the original depth values to conspicuously reduce 

the data volume of depth map and improve the compression 

ratio. In addition, we compress the fitting coefficients by 

employing the open source PAQ project to encode these 

parameters owing to its lossless coding. Figure 4 shows the 

method used to generate the video sequence. 

 

 
Fig.4 Video Generation Based on Polynomial 

 

The residual values are decoded through the video 

decoder on the decoding side, and the predicted depth values 

are calculated by satisfying the expression described using 

the fitting parameters. Moreover, we reconstructed the 

original depth value by calculating the difference between 

the predicted depth value and the corresponding residual 

value. Through this process, we reconstruct the point cloud 

object using the calculated original depth values. 

IV. EXPERIMENTS 

As shown in Table 1, we perform geometry experiments 

on four dynamic point cloud sequences. Moreover, we test 

the compression performance on 32 frames of dynamic 

point clouds in each point cloud sequence. 

Table1 Test Database 

Sequence Total number 

of points 

8ivfb_loot_vox10 (‘Loot’) 25402281 

8ivfb_redandblack_vox10(‘Red’) 23266266 

8ivfb_soldier_vox10(‘Soldier’) 34409568 

8ivfb_longdress_vox10(‘Longdress’) 26698089 

We used HM16.16 decoder as a video compression tool 

and set the code model to All-intra. Our operating 

environment was a Windows 10 64-bit operating system 

with a memory RAM of 8.0 GB and an Intel (R) Core (TM) 
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i5-4590 CPU processor. The program was implemented 

using C++ and Matlab2015a programming languages. 

Our proposed polynomial fitting algorithm is based on the 

V-PCC, so we compare the compression effect of the V-

PCC test model and the proposed method on the same data. 

The rate-distortion curves are shown in figures 5-8, and we 

use the bit per input point (bpip) after compression to 

represent the bit rate cost in compression. The peak signal-

to-noise ratio (PSNR) is calculated based on the widely-

applied point-to-point distortion in MPEG. The geometry 

PSNR is computed as: 

MSE

p
PSNR

)3(
log10

2

10=  

  Where p is the peak constant value defined for each 

reference point cloud, and MSE is the mean squared point-

to-point error. 

 

 
Fig.5 Geometry R-D Curve for ‘Longdress’ 

   
Fig.6 Geometry R-D Curve for ‘Soldier’ 

 
Fig.7 Geometry R-D Curve for ‘Red’ 

As shown in the rate-distortion curves (R-D curves), the 

proposed algorithm improves the performance of a V-PCC, 

reduces the bit cost, and maintains the quality. When the 

bpip is low, the  bpip of our proposal performs better than  

 
Fig.8 Geometry R-D Curve for ‘Loot’ 

that of MPEG Test Model with the same PSNR. An 

improvement is achieved by decreasing the depth values by 

polynomial fitting. Moreover, our method’s PSNR is little 

lower when the test is on high bpip.  

When the compression is close to distortion-free, the 

PSNR will be more sensitive to the errors introduced by the 

fit. As a result, the effect of PSNR is more pronounced than 

the reducing of bpip. This is shown by the R-D curve. With 

the test of the database “ reaandblack_vox10 ” , the 

optimization effect can also be maintained when bpip is high. 

We chose a frame of the database “loot_vox10” as a 

test sample. In Fig. 6, we demonstrated the visual effects of 

our proposal as compared with the test model, which was a 

newly introduced V-PCC at the 123rd MPEG meeting. 

 

 
Fig.9  Result of TMC2 and our proposal  

From the results of our proposal, we obtained a better 

performance that maintains the geometry and texture 

information in the yellow circle. And for some positions, 

some distortion arose in the red circle. The result shows that 

we can render and code attributes even better in some 

locations. 

 

V. CONCLUSIONS 

In this paper, we propose a dynamic point cloud 

compression method that combines V-PCC and patch-wise 

polynomial fitting to carry out geometry compression. Since 

the surface characteristics of the point cloud segment are 

obvious, the surface fitting can be used to improve 

compression efficiency and maintain information quality. 

Simultaneously, it provides a potential application value in 

point cloud attribute compression. 
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