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ABSTRACT
In this paper we compare the quality of synthesized views
produced by four DIBR methods when fed by depth maps
estimated by five state-of-the-art stereo matching algorithms.
Also, we compute the correlation between four popular met-
rics for ranking stereo matching algorithms and two metrics
commonly used to evaluate synthesized views (PSNR and
SSIM) plus one specific for DIBR. Among our findings, we
highlight that (i) PSNR and SSIM have a weak correlation
with common stereo matching metrics, (ii) using ground-truth
depth does not lead necessarily to the best DIBR result; and
(iii) estimated depth maps present artifacts that affect differ-
ently DIBR methods.

Index Terms— quality assessment, stereo matching,
view synthesis, depth-image-based rendering (DIBR)

1. INTRODUCTION

Stereo matching (SM) is a well-studied problem, and it has
been applied to several research-linked tasks such as robot
navigation, surveillance and obstacle detection [1]. More
recently, novel gadgets like Apple iPhone Xs and Samsung
Galaxy S9+, which provide a portable easy-to-use built-in
stereo vision camera setup, are bringing this technology to
the end user. In this context, 3D photography – achievable by
exploring the two cameras – is a promising way for recording
and storing view-point changing still images and videos.

However, synthesizing novel views when the view-point
is far from the original capture positions is still an open prob-
lem [2]. One particular class of view synthesis approaches
is based on depth-image-based rendering (DIBR) [3], which
uses as input a single color image and its associated depth
map (obtainable via SM), and produces a novel synthesized
view. To produce coherent novel views, DIBR methods
must deal with occlusions/disocclusions, out-of-field areas
(OOFAs), ghosts and cracks [4].

Several methods that address the DIBR problem [5, 6,
7, 8, 9, 10]. However, to the best of our knowledge, these
methods assume that the depth (or disparity) maps are pro-
vided, i.e., they use ground-truth depth maps for both quan-

This study was partially funded by the Coordenação de Aperfeiçoamento
de Pessoal de Nvel Superior - Brasil (CAPES) - Finance Code 001 - and the
Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq).

titative and qualitative assessment. Unfortunately, despite the
increasing advances in both acquisition techniques and algo-
rithms along the last years, the assumption of having highly
accurate depth maps is still unrealistic for most practical ap-
plications [11]. Thus, the performance of each DIBR method
in real scenarios, for which the disparity map must be esti-
mated, is practically unknown.

The present study aims to evaluate the quality of the syn-
thesized views produced by different DIBR approaches when
fed with realistic disparity maps produced by SM approaches.
It also aims to answer the following research question: “Are
the stereo matching and view synthesis evaluation metrics
correlated?” In other words, we want to know if, consistently,
a “well-ranked” SM algorithm (according to a given SM met-
ric) will provide better results in the DIBR context (accord-
ing to a DIBR metric) than another “poorly ranked” method.
Aiming to make our analysis as complete as possible, we se-
lect five SM algorithms [1, 12, 13, 14, 15] ranked according
to four commonly used metrics [16]. On the other hand, four
methods for DIBR [5, 7, 6, 8] are considered for comparison.
We relate them based on a figure-of-merit that is specific for
assessing DIBR-synthesized views [17].

The rest of this paper unfolds as follows. Section 2.1 re-
vises a few closely related works. Then we expose the pro-
tocol for selecting SM and DIBR methods for our analysis,
and briefly explain them in Sections 2.2 and 2.3, respectively.
Supported by our hypotheses, the experimental setup is shown
in Section 3. Section 4 discusses the obtained results. Finally,
we conclude the paper in Section 5.

2. RELATED WORK

2.1. Quality Assessment Works
Here we discuss the closely related works that investigate
the relationship between the problems of stereo matching
and view synthesis. Lu and colleagues [18] found that the
root mean square (RMS) error of estimated disparity maps
may not correlate with the quality of interpolated views.
These conclusions are drawn from experiments varying the
SM algorithms but using only one view interpolation (VI)
method. Taking into account the issues commonly found in
VI pipelines, they propose a novel figure-of-merit for ranking
SM algorithms. In practice, VI and DIBR methods do not suf-
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fer from exactly the same issues, so that their metric does not
apply to this work. It is worth mentioning that VI methods re-
quire at least two color and two depth images, differing from
the DIBR approach which uses only one color-plus-depth
(V+D) image.

Similarly, Fuhr et al. [19] compared different SM algo-
rithms facing VI as their target application. They consider dif-
ferent SM algorithms, chosen ad-hoc, but only one VI method
was tested, as done in [18]. Furthermore, a single figure-of-
merit is used for ranking SM algorithms, and the novel views
are assessed by general-purpose image quality metrics. They
concluded that the “number of bad pixels” in estimated dis-
parity maps, which is a common metric for evaluating SM
methods, is weakly correlated to the peak signal-to-noise ra-
tio (PSNR) [20] and structural similarity index (SSIM) [21]
measurements from the synthesized views.

To the best of our knowledge, no other studies are analyz-
ing the impact of estimated depth maps on the results of view
synthesis (VI or DIBR) methodologies.

2.2. Stereo Matching Algorithms
Stereo matching simulates the functioning of human eyes to
obtain the distance from objects to two slightly shifted cam-
eras by computing the disparities of corresponding pixels [1].
There is growing a number of SM algorithms, and selecting
the one which performs best for a given task is not trivial [19].
Also, different quantitative error metrics capture different er-
ror types. In this work, we select four SM metrics used in the
well-known Middlebury benchmark [16], namely bad 2.0,
avgerr, rms and a95. They form a representative subset
from all the metrics in Middlebury, favoring different error
types in the matching.

Errors based on the percentage of “bad” pixels classify
pixels into good and bad based on an acceptance threshold for
the disparities differences. Bad pixels have the same penalty
regardless of how far they are from the actual value. This is
the case of the metric bad 2.0, where the threshold is set
to 2.0. On the other hand, sums/means of absolute or squared
errors increasingly penalize estimates far from the ground-
truth, so that few bad pixels can corrupt the result. Metric
avgerr captures the average absolute error, a95 the 95th
percentile error, and rms the RMS error, all of them in pixels.
We sort the algorithms listed in the benchmark1 in ascending
order, in which their ranking score is given by the sum of the
respective positions according to bad 2.0, avgerr, rms
and a95 for the test dense set and disregarding occlusion-
removal masks. The smaller the score of the combined metric
the better. Then, we select the five best performing algorithms
with source code available according to the combined metric.
They are briefly explained next.

Yin et al. [1] present a dictionary learning data-driven
matching cost approach for comparing image patches. In-

1Algorithms ranked in http://vision.middlebury.edu/
stereo/eval3 up to the paper submission.

stead of relying on color or texture information from the
patches, their method computes the dissimilarity between
learned sparse codes obtained from the input views. Those
matching features are further incorporated in a semi-global
cost aggregation and a post-processing step.

Zhang and others [14] propose a global SM algorithm
that works on a 2D triangulation of the reference view, and
generates a surface mesh containing depth information that
is suitable for rendering virtual view-points (VVPs). Their
two goal tasks, disparity estimation and view interpolation,
are modeled as a two-layer Markov Random Field (MRF), be-
ing enforced each one by a separate layer. The authors claim
that both problems are connected, and they indeed show com-
pelling results. Despite that, the source code released by the
authors does not implement the 2D triangulation, but instead
only super-pixel segmentation via SLIC.

Taniai et al. [13] proposed a global optimization method
also based on MRF with a continuous stereo approach. In
their work, an initial randomized solution is optimized by
MRF formulated by two terms: one that measures the photo-
consistency between pixels, and another that aims to penal-
ize local disparity discontinuities. For each patch of a grid-
formatted image, local expansion moves are applied consid-
ering localization and spatial propagation in a graph-cut opti-
mization scheme. This process is applied using a randomized
search to infer continuous label space.

Mozerov and Weijer [12] explore the potential of cost fil-
tering and energy minimization in their method. Their cost
volume is defined by a linear combination of two per-pixel
dissimilarities between left and right stereo images and their
gradients. To generate the final disparity map, two distinct
MRF models are used. A fully connected model is used in en-
ergy minimization of the cost filtering, and then a locally con-
nected model is employed to exploit unary potentials. Finally,
they perform a series of post-processings. The same authors
also proposed another method, that they name OVOD [15].
The article associated to OVOD is in peer review process,
with no preprint version, so that its definition is not acces-
sible. Since OVOD meets the requirements of our ranking
approach, we consider it in our analysis.

2.3. Depth-Image-Based Rendering Algorithms
The core idea of a DIBR pipeline is to project a real (refer-
ence) image to a desired VVP via 3D warping [6, 7]. In this
process, however, different types of artifacts may appear in
the synthesized view, such as cracks, ghosts, disocclusions,
and OOFAs [4]. Cracks are related to rounding errors in the
warping estimation process [5, 20]. Disocclusions are back-
ground areas occluded by foreground objects in the reference
image that should be visible in the VVP [22]. Ghosts appear
on depth discontinuities that are not sharp enough in the im-
age domain [8]. Finally, OOFAs arise when the VVP exceeds
the reference view bounds, creating regions without informa-
tion on the edges of the synthesized view [4]. We consider
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four open-source DIBR algorithms that tackle those artifacts
differently. Unlike in SM, there is no standardized protocol
for comparing DIBR methods.

Solh and AlRegib [6] introduced a hierarchical hole filling
(HHF) algorithm that can be coupled to any DIBR pipeline.
The main idea of the authors is to process the warped im-
age (synthesized view) in a coarse to fine approach, filling
missing data (holes) with neighboring pixels via pseudo-zero
canceling plus Gaussian filtering. They also propose a depth
adaptive version of HHF that weights pixels according to how
far they are from the camera. The code released by the authors
does not implement the depth adaptive HHF version.

Unlike HHF that treats all warping artifacts simply as
“holes”, Ahn and Kim [5] make distinction between empty
cracks and ghosts. In their method, although ghosts are iden-
tified they are marked as arbitrary holes. Furthermore, empty
cracks are completed by median filtering. The authors rely on
an extension of the well-known Criminisi’s exemplar-based
inpainting algorithm [23] for completing the remaining holes.
The hole filling order is defined based on a confidence term
that prioritizes background points, and patch matching search
is performed in a limited region considering only background
areas. The most similar patch in color sense provided that the
depth in this region is “nearly flat” is chosen.

The selective hole-filling (SHF) method proposed in [8]
identifies and corrects cracks and ghosts, and tackles larger
holes by exploring depth in a patch-based inpainting scheme.
More precisely, ghost points are moved to the opposite edge
of the hole (foreground), and empty cracks are filled by a fast
inpainting algorithm [24]. Afterwards, an extension of Crim-
inisi’s algorithm is used to complete the remaining holes. In
this extension, the data term is replaced by a new depth term
that aims to fill the holes prioritizing smaller disparities.

More recently, besides empty cracks and ghosts, Oliveira
and colleagues [7] proposed to tackle also translucent cracks,
OOFAs and disocclusions separately. Thus, the method is
fully artifact-type aware and, for short, hereafter we will refer
to it as ATA. ATA’s preprocessing is performed in two steps.
Initially, points classified as ghosts are reprojected to their
correct position according to the estimated disparity value
in the foreground. Then, translucent and empty cracks are
detected and completed using the HHF algorithm. Unlike
to [8, 5], disocclusions and the OOFAs are filled by two dif-
ferent extensions of the Criminisi’s algorithm. For both hole
types, the search is performed in a delimited region on the
original image, but using dynamically adaptive patch sizes.

3. EXPERIMENTAL SETUP

Here, we evaluate the performance of all the selected DIBR
methods when using depth estimated by all the considered
SM algorithms (plus the ground-truth disparity, which is
available in [16]). Parameters of the methods are set accord-
ing to the papers or, if missing, according to the released

View #1 View #5Stereo matching

Synth. #2 Synth. #3 Synth. #3 Synth. #4

DIBR DIBR

Depth #1 Depth #5

Fig. 1. Pipeline of our experimental setup.

source codes. Metrics for ranking SM algorithms were pre-
sented in Section 2.3. For assessing synthesized views, we
use PSNR and SSIM since they are the standard figure-
of-merit used in [6, 5, 8, 7], and also the context-specific
morphological-wavelet PSNR (MW-PSNR) [17]. Since we
need at least three views, two for estimating depth and a third
one for assessing the synthesized view, we use the multi-view
half-sized image sets from Middlebury 2006 [16].

Fig. 1 depicts the pipeline of our experimental setup. We
feed Views 1 and 5, which have ground-truth for the dispar-
ity map, to a given SM algorithm and produce two disparity
maps, one for each reference view (1 and 5). Then, we re-
cover depth from the camera intrinsics, given in [16], and the
disparities. Together with the color image, we submit the esti-
mated depth maps to a selected DIBR technique. We synthe-
size novel views in the same camera positions of real Views 2
and 3 based on the V+D information of View 1, and Views 3
and 4 from the V+D data of View 5. This way we can assess
the quality of both depth maps and synthesized views against
the respective ground-truths.

4. RESULTS AND DISCUSSION

Based on the pipeline explained in Section 3, we are able
to compare the results varying (i) SM and (ii) DIBR tech-
niques, being assessed via figures-of-merit such as (iii) bad
2.0, avgerr, rms and a95, and (iv) PSNR, SSIM and
MW-PSNR. Note that relating those variables form a four-
dimensional hyper-cube. Moreover, there are two additional
dimensions: the image sets from [16], and the two depth maps
and four synthesized views per image set.

Table 1 presents average PSNR, SSIM and MW-PSNR
results (for the 21 × 4 = 84 views of the dataset) for all
the DIBR methods and SM algorithms besides the ground-
truth depth map (column GT). The best results for each met-
ric are highlighted in boldface. Note that using GT dispar-
ity maps does not lead to the best synthesized view. In fact,
using methods like [1, 15, 13] for estimating depth tends to
produce better PSNR, SSIM and MW-PSNR measurements
than if the ground-truth is used. Similar findings were also
reported in [18]. Contrarily to what occurs with the selected
SM algorithms, ground-truth maps have no disparity values in
regions classified as unknown [16], i.e., regions without cor-
respondences in both left and right views. In practice, DIBR
methods have much more pixels to estimate when using the
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Table 1. Average PSNR, SSIM, and MW-PSNR per row.
Columns present the SM algorithms (and ground-truth depth
map), whereas the triple-rows delimit the DIBR methods.

[12] [1] [14] [15] [13] GT

[6]
24.334 31.960 16.883 31.143 30.918 29.273
0.7276 0.9532 0.5331 0.9527 0.9536 0.9472
26.258 32.926 20.207 32.593 32.025 31.475

[5]
24.548 31.335 18.254 31.024 30.128 28.713
0.7174 0.9393 0.5258 0.9427 0.9402 0.9290
26.225 30.892 20.363 31.419 30.478 30.075

[8]
24.685 32.196 18.230 31.793 31.811 30.066
0.7229 0.9450 0.5314 0.9496 0.9499 0.9422
25.881 28.854 20.080 30.050 28.951 29.649

[7]
24.859 32.626 18.292 32.052 32.041 31.721
0.7236 0.9512 0.5368 0.9517 0.9531 0.9522
26.435 32.848 20.432 32.717 32.330 32.609

ground-truth depth map.
One may also note that PSNR, SSIM and MW-PSNR sug-

gest three different rankings for DIBR methods when ground-
truth depth map is used. Moreover, if instead we estimated
depth, then we may end up with another ranking. More pre-
cisely, the rankings based on PSNR, SSIM and MW-PSNR
are inconsistent w.r.t. that based on the depth ground-truth for
methods [14], [15, 13, 12] and [1, 14], respectively.

The relative ranking order between the considered SM
algorithms according to bad 2.0, avgerr, rms and the
combined score of all analyzed metrics is the same: Lo-
calExp [13], OVOD [15], MeshStereo [14], DDL [1] and
TSGO [12]. The ranking order based on metric a95 ex-
changes the first and second best-performing algorithms, and
also the two last ones. If using the view synthesis metrics for
ranking, we end up with different orders, as can be seen in
Table 1. Specifically, the method in [14] performed worst,
probably because the released code is a rough approximation
for the actual published method.

We further investigate the relationship between SM and
DIBR metrics. Table 2 presents the strongest Spearman cor-
relation [25] and the corresponding SM and DIBR techniques,
for all the combinations of SM and DIBR metrics. One may
note that our results suggest that metrics bad 2.0 and MW-
PSNR have a fairly strong negative relationship. This anal-
ysis also indicates that it is not expected to have necessarily
higher SSIM and PSNR values for synthesized views when
we choose SM methods that minimize the error metrics bad
2.0, avgerr, rms and a95. Our findings agree with those
shown in [19] for the view interpolation scenario.

DIBR artifact types reported in the literature are related
to ground-truth depth maps. SM-based depth maps may dif-
fer, leading DIBR techniques to present contrasting results.
By visual inspection we could note that cracks, ghosts, and
OOFAs presented the same patterns reported in literature, al-
though the first two tend to appear more intensely. However,
disocclusion regions are contaminated with over-segmented
depth layers due to inaccurate depth estimation, producing

Table 2. Correlation analysis for SM and view synthesis met-
rics. References within the cells indicate the methods for
which the maximum correlation was achieved.

bad 2.0 avgerr rms a95

PSNR −0.39[15, 8] −0.37[15, 8] −0.34[14, 8] −0.40[15, 8]

SSIM −0.40[14, 8] −0.47[14, 5] −0.44[14, 5] −0.33[14, 5]

MW-PSNR −0.80[13, 8] −0.74[13, 8] −0.68[13, 8] −0.65[13, 8]

a distortion effect especially in foreground objects and their
edges. The effect of over-segmentation in ghost areas tends to
be small for techniques based on successive averaging of lo-
cal information, such as HHF [6]. Differently, for patch-based
techniques [5, 8, 7], this problem may produce many inco-
herent artifacts. These techniques perform the reconstruction
process using a patch as a model (selected from the target hole
edge), which is compared to valid information in the synthetic
view, and the most similar is copied to the empty region, it-
eratively. Also, the patch-based techniques classify disocclu-
sion edges based on the warped depth map in order to use
models composed of background information. Nevertheless,
the classification itself may not be satisfactory as the depth is
not consistent with the texture, as illustrated in Fig. 2. More
results will be available at the author’s webpage: http://
www.inf.ufrgs.br/˜mwalter/dibrxsm/.

Fig. 2. Warped view of Bowling1 using ground-truth and
estimated depth-maps using [13], [14], [15], [12] and [1],
from the top-left to bottom-right.

5. CONCLUSIONS

We presented a comparative study focusing on the quality of
synthesized views produced by different DIBR techniques,
coupled to depth maps estimated via different state-of-the-
art SM algorithms. We have experimentally shown that: (i)
DIBR methods can generate better results if using SM-based
depth maps, instead of the ground-truth; (ii) DIBR techniques
are ranked differently when fed by depth maps generated
with SM algorithms or ground-truth depth; (iii) SM methods
that minimize SM error measures do not necessarily result in
better synthesized views according to SSIM and PSNR; (iv)
MW-PSNR has a strong negative correlation to SM metrics,
and may be more useful for assessing DIBR methods than
PSNR and SSIM; (v) and SM-based depth maps contain er-
rors that mislead DIBR techniques, indicating that they may
not be prepared for real scenario applications.
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[17] D. Sandić-Stanković, D. Kukolj, and P. Le Callet,
“Multi-Scale Synthesized View Assessment Based on
Morphological Pyramids,” J. Electr. Eng., vol. 67, no.
1, pp. 3–11, 2016.

[18] J. Lu, Q. Yang, and G. Lafruit, “Interpolation error as
a quality metric for stereo: Robust, or not?,” in IEEE
ICASSP, 2009, number D, pp. 977–980.

[19] G. Fuhr, G. P. Fickel, L. P. Dal’Aqua, C. R. Jung,
T. Malzbender, and R. Samadani, “An evaluation of
stereo matching methods for view interpolation,” in
IEEE ICIP, 2013, pp. 403–407.

[20] Y. Mori, N. Fukushima, T. Fujii, and M. Tanimoto,
“View generation with 3d warping using depth informa-
tion for ftv,” in 3DTV Conference, 2008, pp. 229–232.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli, “Image Quality Assessment: From Error Visibility
to Structural Similarity,” IEEE Trans. Image Process.,
vol. 13, no. 4, 2004.

[22] G. Luo, Y. Zhu, Z. Li, and L. Zhang, “A hole filling
approach based on background reconstruction for view
synthesis in 3D video,” in CVPR, 2016, pp. 1781–1789.

[23] A. Criminisi, P. Perez, and K. Toyama, “Region filling
and object removal by exemplar-based image inpaint-
ing,” IEEE Trans. Image Process., vol. 13, no. 9, pp.
1200–1212, 2004.

[24] M. M. Oliveira, B. Bowen, R. McKenna, and Y. Chang,
“Fast digital image inpainting,” in VIIP, 2001, pp. 261–
266.

[25] C. Spearman, “The proof and measurement of associ-
ation between two things,” The American Journal of
Psychology, vol. 15, no. 1, pp. 72–101, 1904.

2276


		2019-03-18T11:05:23-0500
	Preflight Ticket Signature




