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ABSTRACT
In this paper, we address the problem of estimating a scene’s three-

dimensional geometry from plenoptic camera images. Existing ap-
proaches for this problem have emphasized the development of sharpness
and contrast measures for distinguishing between in-/out-of-focus image
regions. The ways in which these measures are aggregated can yield
erroneous, localized distance fluctuations, though. To deal with such
fluctuations, post-processing smoothing techniques can be applied. How-
ever, they may remove fine-scale, non-erroneous depth structures and
edges. Here, we propose a non-convex, discontinuous cost-function that
simultaneously combines and regularizes sharpness and contrast so that
valid depth transitions are better preserved. We implicitly convert this
function into one that is continuous and (quasi-)convex by optimizing it
on the non-positively-curved Riemannian manifold of depth maps with
a learned metric.

Index Terms—Depth from focus, depth estimation, manifold opti-
mization, image processing

1. INTRODUCTION
Inferring the three-dimensional shape of objects from two-dim-

ensional information is a fundamental task for many problems. Out of
the myriad shape recovery approaches, those that rely on focus analysis
have received substantial attention. These approaches can be divided
into two categories: depth from focus [1, 2] and depth from defocus
[3–5]; we focus on the former category in this paper.

In depth-from-focus, distance information is estimated from image
sequences of the same scene captured with different degrees of focus.
Approaches to the problem can exploit properties of camera models to
analytically resolve scene distances. In practice, though, investigators
may not have access to the necessary camera parameters; issues with
measurement noise may also be encountered, which can affect the depth
estimates. It is thus common to instead rely on a two-step, approximate
procedure to overcome such issues. The first step entails discerning cues
about depth from local focus variation, which detects the in-focus regions
of each image in a focal stack. Such variations can be found using one of
many available sharpness/focus measures [6–10] that respond to regions
with stark changes in texture; we refer to [11] for comparisons of these
measures and their performances. The second step involves aggregating
the in-focus information from the entire focal stack to estimate the depth
of every point in the scene. This reconstruction phase often requires
the model-based interpolation of the focal measure [12]. Most of these
models are heuristic in nature.

Depth-from-focus estimates may contain spurious artifacts. The
estimates can sometimes be improved by either post-processing the
focus measure [13] or by exploiting defocus information [14–16]. As an
example, Muhammad et al. [17] advocate discarding portions of the scene
with high depth variations. Their reasoning is that such regions arise
due to an inaccurate computation of the focus measure. The discarded
regions are then recovered via spatial interpolation. A somewhat similar
approach is taken by Pertuz, Puig, and Garcia in [18]. In [19], Gaganov
and Ignatenko utilize a spatial, random-field-based model to smooth
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depth maps in low-reliability areas. Both types of approaches assume that
details from highly-textured areas can be used to better infer depth map.
However, with the exception of [18], it is not clear how to distinguish
between low- and high-reliability areas, especially when one or more
sharpness/focus measures are performing poorly. Substantial errors can
therefore be unnecessarily propagated into the produced depth maps.

Another common technique to enhance the quality of the focus
volume, after the depth-estimation process, is to combine sharpness or
contrast values within small-scale neighborhoods [20, 21]. This fusion
of this information serves to smooth some of the erroneous depth fluctu-
ations. Unfortunately, the efficacy of this technique is greatly affected by
the neighborhood size. Malik and Choi [20] determined that large neigh-
borhoods tend to remove fine-scale depth structures and valid, sudden
transitions between regions of differing depths. They hence suggested
relying on small neighborhoods. While such neighbors preserve such
structures rather well, they often do not adequately suppress depth noise.

We posit that modifications to the depth maps should occur during
the aggregation phase, not after it, so as to reduce the potential for
perturbing the depths in high-reliability regions. Toward this end, we
introduce a framework for the depth-from-focus problem for plenoptic
camera images. This framework relies on a two-term cost function.
The first term, a data fidelity component, quantifies depth using the
sum-modified Laplacian [6] sharpness measure. The second term, a
regularization component, penalizes depth estimates that fluctuate greatly
over local neighborhoods. It utilizes the discrete, isotropic total variation
for smoothing depth while preserving edge information.

The variational objective function that we define is innately discon-
tinuous and non-convex. Discontinuity of the functional is due to the
regularization component, while non-convexity can stem from the data
fidelity component. To deal with these issues, we optimize the cost over
Riemannian manifolds of matrices with non-positive curvature. Depend-
ing on the chosen metric, the non-convex cost function can become
either quasi-convex or convex. Additionally, on such manifolds, we can
separate the non-smooth parts of the functional into differentiable and
non-differentiable components. We can then define fixed-point iterations
of proximity operators to handle the non-differentiable components. Due
to the convexity of both components, we are assured that the global-
best depth map, as characterized by our cost, will be uncovered. The
theoretical treatment of this process is the main contribution of our paper.

2. METHODOLOGY
In what follows,M is a connected, embedded manifold that is a

smooth subset of a vector space included in the set of matrices Rm×n.
The tangent space forM is denoted by TpiM for a point pi∈M. The
associated co-tangent space is denoted by T ∗piM.

On each tangent space, we can define a family of inner products that
smoothly varies: that is, pi 7→ 〈x(pi), y(pi)〉pi is a smooth function
for vector fields x, y. Such families give rise to a Riemannian metric.
WhenM is endowed with a Riemannian metric g, it is referred to as a
Riemannian manifold.

For xi∈M, we have a curvature operator κvi : TxiM→ TxiM
for an non-zero vector vi∈TxiM; we assume thatM is additionally
complete. From the Bianchi identities, κvi is a linear operator. It is
negative semi-definite for each vi if the sectional curvature ofM is non-
positive. In such a case, we are dealing with a manifold with non-positive
curvature.
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2.1 Cost Function
We propose to address the depth-from-focus problem by minimizing

a joint cost functional f :M→ R that converts a depth map defined
on a non-positively-curved, Riemannian matrix manifold to cost, or
energy, magnitudes. This cost is a combination of two components:
one for data fidelity f1 and another for depth regularization f2. That
is, f(xi)=f1(xi)+αf2(xi), xi∈M, for some regularization weight
coefficient α≥0.

The data fidelity term will be used to quantify the goodness of the
depth map according to some chosen sharpness, or contrast measure,
applied to each image in the focal stack obtained from a plenoptic camera.
A thorough comparison of existing contrast measures [11] indicates that
the sum-modified Laplacian [6] performs the best. We opted to use this
contrast measure as our data fidelity term

f1(xi) = −
∑
j,k,r c(j,k,r)xi,(j,k), c(j,k,r)=[D2yr](j,k)

where D2yr : M → N is a forward, second-order finite-difference
operator that maps to the manifold ofN w(R2)m×n vector fields that
is diffeomorphic to the reals. The element y(r)∈M represents the rth
focal stack image.

The regularization component enforces a smoothness constraint on
the scene reconstruction. This component should incorporate any prior
knowledge about the expected properties of the associated depth map.
Here, we utilize the discrete, isotropic total variation regularizer

f2(xi) = max
u∈N ,Nw(R2)m×n

{〈Dxi, u〉 : −1≤u(j,k)≤1, ∀j, k}

whereDxi :M→N is a forward, first-order finite-difference operator.
Our motivation for utilizing total variation is due to its well-known
edge preservation properties: we want to ensure that widespread jumps
in depth are not overly smoothed while suppressing noisy, localized
fluctuations in distance.

2.2 Cost Optimization and Analysis
By default, the data-fidelity component may not be continuous. To

deal with this issue, we can consider multi-order polynomial approxi-
mations. In utilizing such approximations, though, we potentially forgo
convexity. On the other hand, while the regularization component is
convex, it is not inherently smooth.

In the optimization literature, there are schemes that can address
functionals with components of varying smoothness and convexity. A
prominent example involves using forward-backward splitting [22].
Forward-backward splitting entails performing a forward gradient step
on the smooth, convex functional components. A backward gradient step
involving sub-gradients is then carried out on the non-smooth, potentially
non-convex components. Such schemes are provably convergent to
critical points, commonly under mild conditions.

There are some drawbacks to such schemes. A typical means of deal-
ing with non-convexity in forward-backward splitting is to linearize the
associated components. However, linearization can drastically alter the
associated solutions of the cost functional. In our problem, linearization
of the regularization component can yield depth maps that contain a
series of sharp, unnecessary fluctuations in depth. We are trying to avoid
this exact situation: we would like there to be gradual transitions in depth
over neighboring regions with similar depth estimates. Sharp transitions
should only occur in regions where there is pronounced, widespread
change in depth.

To deal naturally with non-convexity and non-smoothness, we will
optimize our functional on non-positively-curved Riemannian manifolds
endowed with a learned metric. We generate candidate depth maps
xki ∈M, k = 1, 2, . . . according to the following proximal-gradient
iteration

xk+1
i ← arg inf

xj∈M
f(xj)+λ

k〈exp−1
xj

(xki ), exp−1
xj

(xki )〉2/2

for the inverse exponential map. Here, the step-length variables λk>0,
limk→∞λ

k→0, are each positive numbers for all time steps k. Large
values of λk yield more changes in the intermediate depth maps than
small values. Hence, the sequence should move more quickly toward a
stationary point for larger magnitudes. However, after a certain threshold

is reached for λk, the iteration destabilizes and may not reach the global
optimum. We therefore implicitly assume that λk is bounded from above
so as to prevent this occurrence.

In what follows, we demonstrate that this proximal-gradient iteration
converges to global minimizers of the cost function on non-positively-
curved, complete Riemannian manifolds. Proofs of these claims are
given in an online appendix1.

2.2.1 Convexity for Non-Positively-Curved Manifolds
In this sub-section, we draw some connections between Euclidean

spaces and complete, Riemannian manifolds with non-positive sectional
curvature. By establishing these connections, we can specify the notion
of convex functions on such manifolds.

Proposition 2.1 [23]: Let xi ∈ M, where M has non-positive sec-
tional curvature and is Riemannian. Let expxi : TxiM→M be the
exponential map. Then:

(i) ‖dexpxi(β)‖ ≥ ‖β‖, β ∈ TviTxiM, where vi ∈ TxiM.
We assume that TviTxiM inherits the Euclidean metric from the
tangent space TxiM.

(ii) If γ : R → TxiM is a smooth curve, then its length
is bounded above by the length of expxi ◦ γ. If M is simply
connected, then d(expxi(vi), expxi(v

′
i)) is bounded below by the

distance between any vi, v′i∈TxiM.
Proposition 2.2 [23]: Let xi∈M, whereM has non-positive sec-
tional curvature. Then:

(i) expxi : TxiM→M is a covering map.
(ii) If M is simply connected, then expxi is a diffeomor-

phism. More specifically, if pi, qi∈M are distinct, then there is
a unit-speed geodesic γpi,qi : R → M with γpi,qi(0) = pi and
γpi,qi(d(pi, qi))=qi. This geodesic is unique.

Propositions 2.1 and 2.2 can be used to show that a Riemannian manifold
Mwith non-positive curvature is diffeomorphic toRm×n. Thus,M has
the same topology as Rm×n. These manifolds hence share some similar
geometric properties, which allows for the construction of convex sets
on them.

The notion of convex sets on manifolds of non-positive curvature is
somewhat analogous to that of convex sets for Euclidean spaces. The
subset U ofM is said to be convex if a geodesic segment with end-points
in U is itself entirely contained in U . A function f :M→ R is said
to be convex if, for any geodesic segment on an open convex set U , the
composition f ◦ γ : R→ R is convex.

The following result characterizes convexity for differentiable func-
tions defined on non-positively-curved manifolds. A consequence of
this proposition is that the critical points for any convex function are
global optima.

Proposition 2.3 [23]: LetU be an open convex subset of a non-positively-
curved, Riemannian manifoldM. Let f :M→ R be a differentiable
function on U . The function f is convex on U for pi, qi∈U if and only
if f(qi)−f(pi)≥〈gradf(pi), exp−1

qi
(qi)〉.

We can alternatively use the monotonicity of a function’s gradient
to obtain that it is convex on non-positively-curved manifolds. Such a
result will be particularly important for simplifying the convergence
analysis of our framework: we define an iteration that is the sum of a
cost functional and a strongly monotone vector field.

Let U be an open, convex set on the manifoldM. Given a vector
field y defined onM, this vector field is said to be monotone on U if

〈exp−1
qi

(pi), para−1
qi,pi

y(pi)−y(qi)〉≥0,

for all pi, qi∈U . Here, para−1
qi,pi

is the inverse parallel transport along
the geodesic joining points qi to pi. A vector field y is strongly monotone
[?] if, for α>0,

〈exp−1
qi

(pi), para−1
qi,pi

y(pi)−y(qi)〉≥αd2(pi, qi),

1Temporary web link for the online appendix: https://www.dropbox.com/s/
ohpit2rh9safjrz/Sledge-ICASSP-2019-2col-appendix.pdf?dl=0 (A copy of the
paper and the appendix will be uploaded to arXiv upon acceptance.)

2268



for any pi, qi∈U .

Proposition 2.4: Assume that U ⊂ M is an open, convex set. For
any differentiable function f : M → R on a non-positively-curved,
Riemannian manifold, we have that:

(i) The function f is convex on the set U if and only if grad(f)
is monotone on U .

(ii) The function f is strongly convex on U if and only if
grad(f) is strongly monotone on U .

2.2.2 Derivatives for Non-Positively-Curved Manifolds
In this sub-section, we recall the notion of the directional derivative

of a manifold-based convex function and discuss some of its properties
[24]. We also recall the notion of sub-gradients and sub-differentials for
a certain class of convex functions.

Assume that we have an open, convex subset U of a non-positively-
curvedM and a convex function f :M→ R on it. Let γ be a geodesic
on U such that γ(0)=pi and γ̇(0)=qi for pi∈U and qi∈TpiM. The
directional derivative [25] of f at pi in the direction of qi is given by
f ′(pi, qi) = inft>0f(γ(t))/t−f(pi)/t. From the convexity of f ◦ γ,
the directional derivative is non-decreasing.

Let f :M→ R be a convex function. A one-form wpi ∈T ∗piM is
called the sub-gradient of f at pi if f(qi)≥f(pi)+wpi(γ̇pi,qi(0)) for
all pi, qi∈M. Here, γpi,qi is the geodesic such that

γpi,qi(0)=pi and γpi,qi(1)=qi, with γ̇pi,qi(0)∈TpiM.

The set of all sub-gradients of f at pi is called the sub-differential of f
at pi and is denoted by sub(f(pi)). The multi-form map sub(f) : pi 7→
sub(f(pi)) is referred to as the sub-differential of f .

Proposition 2.5: Let U be an open, convex subset of M. Let fi :
M → R be a differentiable, convex function on U for i=1, 2, . . . If
f :M→ R is given by f(xj)=maxifi(xj), then the sub-differential
of f(xj) is given by conv(grad(fi)), or, rather the set of all qi∈TpjM
such that

qj=
∑
i aigrad(fi(pj)),

∑
i ai=1, ai≥0

where the index i is such that f(pj)=fi(pj). The variable pj attains a
minimum of the function f if and only if∑

i aigrad(fi(pj))=0,
∑
i ai=1.

For our analysis, we will also need a version of the directional
derivative for a locally Lipschitz function that is not necessarily convex.
Let U be an open, convex subset ofM. On this domain, we define a
locally Lipschitz function f : M → R. The generalized directional
derivative of f at pi∈U and in the direction vi∈TpiM is given by

f ′(pi, qi)= lim
t→0

sup
vi→pi

f(expqi(t(Dexppi)exp−1
pi

(qi)
(vi)))/t−f(qi)/t.

We refer to the differential of exppi at exp−1
pi

(qi) by (Dexppi)exp−1
pi

.
Associated with a locally Lipschitz function is a generalization of

the notion of the sub-differential. Let U be an open, convex subset of a
non-positively-curvedM. On this domain, we define a locally Lipschitz
function f :M→ R. The generalized sub-differential gsub(f(pi)) is
defined by the set of all vi ∈ TpiM such that 〈vi, wi〉 is less than or
equal to f ′(pi, wi) for all wi∈TpiM, pi∈M. Here, f ′(pi, wi) is the
generalized directional derivative.

Proposition 2.6: Let U be an open, convex subset of a non-positively-
curvedM. Let fi :M→ R be a continuously differentiable function
on U . If f :M→ R is given by f(xj)=maxifi(xj), then f is locally
Lipschitz on U . For each pj ∈ U , conv(grad(fi(pj))) is a subset of
the generalized sub-differential gsub(f(pj)). The index i is such that
f(pj)=fi(pj).

2.2.3 Depth-Map Global Convergence Analysis
In this sub-section, we verify that the depth-map iteration will even-

tually converge to the global-best depth map even if our cost functional is
originally non-convex before the choice of a suitable Riemannian metric.
Our first objective is to demonstrate the convexity of the iteration process.

Convexity of the iteration relies on using a special class of functionals
to recreate our non-convex cost function.

Proposition 2.7: Let U For any xki ∈M, the cost function f(xki )+
λk〈·, exp−1

xi
(xki )〉2/2, for λk>0, is strongly convex in the open, convex

subset U ofM; hereM is Riemannian and has non-positive curvature.

The proof of this claim relies on showing that grad(fi(xki )) is locally
Lipschitz on U , according to proposition 2.6. Hence, the cost function is
strongly monotone, which implies convexity via proposition 2.4.

Next, we need that the sequence of intermediate depth maps
xk, xk+1, . . . is well defined. That is, xk+1 ∈ M, ∀k, exists and is
unique for manifolds with non-positive curvature.

Proposition 2.8: For any depth map initialization x0i ∈M, the iteration

xk+1
i ←arg infxj∈Mf(xj)+λ

k〈exp−1
xj

(xki ), exp−1
xj

(xki )〉2/2

is well defined.

Proposition 2.8 is then used, along with propositions 2.6 and 2.7, to prove
that the sequence of depth maps yields monotonically non-increasing
costs.

Proposition 2.9: Assume that {xki }k is a sequence of intermediate depth
maps generated by the above iteration scheme. As well, assume that
the positive variable sequence {λk}k is strictly bounded below by the
Lipschitz constant of the cost functional. Let Spi,qi(f(qi)) the set of all
pi∈M such that

f(pi)≤f(qi), inf
pi∈M

f(pi)<f(qi).

If for all pi∈Spi,qi(f(qi))\Spi,qi(c) and y(pi)∈gsub(f(pi)) we have
that 〈y(pi), y(pi)〉>0, then the sequence of intermediate depth maps
belongs to Sp,q(c)⊂U .

Lastly, propositions 2.5, 2.7, 2.8, and 2.9 are employed to prove
convergence of the sequence.

Proposition 2.10: Let U be an open convex subset of M. Let fj :
M → R be a differentiable function on U that is continuous on the
closure of U . We define f(xi)=maxjfj(xi), for which we assume that
infxi∈Mf(xi)>−∞. For any initial depth map, the sequence generated
by the above iteration resides in Spi,qi(f(qi))⊂U . Moreover, one of
the following is true:

(i) The sequence of depth maps {xki }k is finite and xki is a
stationary point of the objective functional f .

(ii) The sequence of depth maps {xki }k is infinite and any
accumulation point of the sequence is a stationary point of the
objective functional f .

The above analysis relies on the fact that the cost function is convex for
the appropriate choice of Riemannian metric. Such a metric can be learned
in a data-driven fashion on the manifold of Riemannian metrics met(M)
endowed with the Lebesgue metric. In particular, for an initial guess
of the metric g0 ∈ met(M), we find a correction hk ∈ Tgkmet(M),
k = 0, 1, . . ., where ∇γ̇〈∇f, γ̇〉gk ≥ 0 and 〈grad f(xi; gk), hk〉 < 0.
We then update this metric, in an alternating manner with the proximal-
gradient iterations, via

gk+1 ← expgk (θ
ikhk),

ik≥0 such that f(xi; expgk (θ
ik ))−f(xi; gk)≤βθi

k

for 0≤β, θ≤1.

3. EXPERIMENTS
In the previous section, we developed a framework for finding

globally-optimal depth-from-focus solutions. Given a focal stack, this
framework relies on a two-part cost function to recover depth estimates
and remove abrupt, localized transitions in them.

We now assess our depth from focus framework using focal stacks
taken from a Lytro plenoptic camera. Results for four different scenes
are presented in figures 1(a)–1(d). The left-hand sides of these figures
highlight instances of the focal stacks. The number of images in the
focal stacks ranged from eight to fifteen, depending on the scene, and
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Figure 1: Depth-from-focus results for four scenes. (i) Examples of images from the focal stack. The sub-images in the right-hand corners highlight a particular portion
of the image as the focal length is changed. The images are ordered such that the objects nearest to the camera are in focus for the top-left image. The objects furthest
away from the camera are in focus for the bottom-right image. Objects that are intermediate distances away from the camera become focused as the focal plane sweeps
through these two extremes. (ii) The depth from focus result for the sum-modified Laplacian measure. (iii) The depth from focus results for our variational framework
when not learning a metric, which leads to a non-convex problem. (iv)–(vii) Results when learning a metric for different regularization weights. Raising the
regularization weight α increasingly removes localized depth fluctuations. The regularization weights are: (iv) 0.1, (v) 0.3, (vi) 0.6, and (vii) 0.9. The depth-image color
scheme is such that dark blue corresponds to distances closest to the camera and dark red to distances that are furthest away.

their resolution was 540× 540. On the right-hand sides of these figures
are the returned depth maps from the classical sum-modified Laplacian
method. We also show results for our framework when a metric is not
learned, leading to a non-convex cost function, and when one is, yielding
a convex cost. For the latter case, we varied the regularization weight α
to gauge its effect on the distance smoothing.

In figures 1(a)–1(d), it is apparent that the basic sum-modified Lapla-
cian framework succeeds in finding the general depth structure. In figure
1(a)(ii), for instance, it captures that the chest, arms, and face of the
Statue of Liberty figurine are closer than the neck and part of the tablet.
However, this framework often introduces distance fluctuations in re-
gions where the depth should remain constant. As an example, the depth
for the blue plastic container in figure 1(b)(ii) is heavily distorted. In
figure 1(c)(ii), there are significant depth variations in the white lid of
the Centrum pill bottle and along the bottle edges. Likewise, in figure
1(d)(ii), similar issues are witnessed on the cardboard figurine and in the
background. The distance speckling is due, in part, to the low amount of
texture variation in these regions across each focal-stack image. It is also
a byproduct of having only a few, low-resolution focal stack images.

Our variational framework was largely able to avoid producing
depth maps with such errors. Moreover, there appear to be few, visually
evident, drawbacks to using regularization on these scenes. For example,
the basic shape of the pill bottle in figures 1(c)(iv)–(vii) remains the
same regardless of the regularization amount. Only sporadic fluctuations
become increasingly suppressed as the weight is raised. Much about the
shape of the blue plastic container in figure 1(b)(i) and the cardboard
figurine in figure 1(d)(i) is retained in figures 1(b)(iv)–(vii) and 1(d)(iv)–
(vii) as the weight is increased. It is important to note that these results
could not have been obtained by simply post-processing the results from
the sum-modified Laplacian model. In figure 1(b)(ii), for instance, there
are significant distance variations in the plastic container that could not
be easily removed without also significantly perturbing the remaining
scene depth. Applying averaging and median filters or morphological
operations to the remaining scenes removed many important depth
structures and led to some distance bleeding across various objects.

For figures 1(b) and 1(d), learning a metric versus not doing so
yielded better qualitative depth maps. The distance mottling was reduced
for these scenes, while the object shape was better recovered. In figures
1(a) and 1(c), not much improvement was achieved. This was largely
because corresponding scenes had the highest number of focal images.
The high-frequency texture components could be better discerned by
the contrast measure, which led to local minima that were closer to the

global minima than in the remaining two scenes.
There are at least two reasons as to why we obtained such promising

depth maps. First, our framework is designed to simultaneously consider
both the sharpness measure and the smoothness constraint across all focal
images when assigning a depth value. This behavior allows the framework
to entertain multiple depth hypotheses when making a decision about
objectdistance.Second, the totalvariation regularizer isadeptat removing
localized variations and retaining edges that correspond to widespread
jumps in depth.

There are some general comments that can be made about the results.
One concerns the lack of detailed depth variation in the backgrounds
for many of these scenes. For example, in figure 1(b), some of the
books, pens, and papers are treated as a single object and assigned a
near-consistent distance. In figure 1(b), there are a number of stacked
boxes in the focal stack that are given a near-constant depth value. These
responses are caused by the limited number focal plane locations and
hence focal images. To capture the depth variations of these background
objects, more focal images would be needed.

Another comment concerns the applicability of our method to objects
with certain visual properties. In figure 1(c), the depth outline of the pill
bottle is rather jagged compared to the statue outline in figure 1(a). There
is also some ambiguity about the shape of the blue plastic container
in figure 1(b). These issues are caused by specular reflections near
the curved container edges. These reflections give the edges a faintly
hazed appearance across the focal images. Consequently, there are few
high-frequency components, and it becomes difficult to gauge when the
edges of the containers are in focus. Mirrored objects pose even more
difficulties: the sum-modified Laplacian measure falsely concludes that
these objects have significant variations in depth, as in figure 1(d). Most,
if not all, existing depth-from-focus methods also suffer from the same
issues, though.
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