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ABSTRACT
In this paper, we propose the novel complementary Siamese
networks (CoSNet) for visual tracking by exploiting comple-
mentary global and local representations to learn a match-
ing function. In specific, the proposed CoSNet is two-fold:
a global Siamese network (GSNet) and a local Siamese net-
work (LSNet). The GSNet aims to match the target with can-
didates using holistic representation. By contrast, the LSNet
explores partial object representation for matching. Instead of
simply decomposing the object into regular patches in LSNet,
we propose a novel attentional local part network, which au-
tomatically generates salient object parts for local represen-
tation and adaptively weights each part according to its im-
portance in matching. In CoSNet, the GSNet and LSNet are
jointly trained in an end-to-end manner. By coupling two
complementary Siamese networks, our CoSNet learns a ro-
bust matching function which can effectively handle various
appearance changes in visual tracking. Extensive experiments
on a large-scale dataset with 100 sequences show that CoSNet
outperforms other state-of-the-art trackers.

Index Terms— Visual tracking, complementary Siamese
network, attention model, local and global model

1. INTRODUCTION

Visual tracking plays a crucial role in computer vision with
many applications such as video surveillance, intelligent ve-
hicles, etc. Despite great advances, visual tracking remains
challenging due to many factors including rotation, deforma-
tion and so on. To handle these issues, numerous visual track-
ers have been proposed [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

By formulating tracking as matching the target object in
the first frame with candidates in a new frame, Siamese net-
work has recently drawn increasing interest in visual tracking
due to its ability to learn a powerful generic matching func-
tion, and many trackers have been proposed. Tao et al. [13]
learn a matching function off-line from a great deal of videos
and directly apply it to tracking without any model update.
Bertinetto et al. [12] introduce a fully-convolutional Siamese
architecture to learn a discriminative similarity measurement
for tracking, achieving robust performance while running in
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Fig. 1: Comparisons of CoSNet to other Siamese trackers
on sequences Bolt2 with deformation and MotorRolling with
heavy rotation. Our CoSNet can well handle deformation and
rotation and performs better than SiamFC [12] and SINT [13].

real-time. Guo et al. [14] propose a dynamic Siamese net-
work for tracking by adding extra transformations to update
the target template for tracking. In [15], He et al. propose a
two-fold Siamese network to learn a both discriminative and
generative similarity measurement for tracking.

Despite good performance, existing Siamese trackers still
fail in challenging situations with heavy rotation and defor-
mation (see Fig. 1), because these methods only consider the
holistic representation of object for matching. When heavy
rotation or deformation happen, the global representation
learned by Siamese network changes drastically. Therefore,
it is difficult to use the matching function in these cases to
correctly measure the similarities between the target object
and candidates in a new frame.

To address the above issues, we propose the novel Com-
plementary Siamese Network (CoSNet) by considering both
global and local representation of object for matching. Specif-
ically, CoSNet consists of two components: a Global Siamese
network (GSNet) and a Local Siamese network (LSNet). As
in existing approaches, the GSNet is utilized to capture the
holistic representation of object for matching. To deal with
the issues of deformation and rotation, we propose the LSNet
to explore local representation of object for matching, which
is complementary to global representation of GSNet. Instead
of simply dividing object into regular patches for local repre-
sentation, we propose an attentional local part network to au-
tomatically generate salient object parts in LSNet. Our local
part network is able to extract more accurate yet meaningful
salient parts from object, and semantically aligns these parts,
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Fig. 2: Illustration of the architecture of our CoSNet, which is composed of complementary GSNet (the blue flow) and LSNet
(the green flow). The two CNN branches of GSNet (or LSNet) share parameters with each other. Best viewed in color.

resulting in better local representation for matching. In addi-
tion, considering that object parts of different objects function
differently in matching, we introduce an attention model into
the local part network to adaptively weight each part based
on its importance in the local representation, further improv-
ing the robustness of matching. Extensive experiments on a
large-scale dataset evidence the effectiveness of our method.

In summary, our contributions are three-fold: (1) We pro-
pose a novel CosNet for object tracking by taking into ac-
count complementary global and local object representation
to learn a robust matching function. (2) We propose an at-
tentional local part network to generate salient object parts
for local representation and adaptively weight each one ac-
cording to its importance for matching. (3) Experiments on a
large-scale dataset [16] show that CoSNet outperforms other
state-of-the-art trackers.

2. THE PROPOSED ALGORITHM

2.1. Complementary Siamese Network (CoSNet)

We consider visual tracking as matching target object in the
first frame with candidates in a new frames. To this end, we
leverage the powerful deep Siamese network [17] to off-line
learn a generic matching function from a set of sequences.
Unlike existing approaches [13, 12, 15, 18], we take into ac-
count both holistic template and local representation to learn
a robust matching function, as shown in Fig. 2.

The CoSNet comprises two complementary Siamese net-
works, i.e., GSNet and LSNet, which are jointly end-to-end
trained. The loss L of the CoSNet can be expressed as the
sum of losses of two sub-networks as follows

L = Lg + Ll (1)

where Lg and Ll are the losses of GSNet and LSNet (as de-
scribed later). Once trained, we can use the learned matching
function as it is for tracking, without any further update.
Global Siamese network (GSNet): The GSNet aims to cap-
ture the global representation of object for matching. In spe-
cific, GSNet contains two identical CNN branches borrowed

from VGGNet [19], as shown in Fig. 2 (the blue flow). Specif-
ically, we employ the truncated VGGNet pre-trained on Ima-
geNet [20], and discard all layers after the 5th pooling layer.
A new fully connected layer is added after the last pooling
layer, followed by a `2 normalization layer. In the end, the
two CNN branches are connected by a single contrastive loss
layer, as shown in Fig. 2. The GSNet takes as inputs two im-
ages xj and xk, and the contrastive loss Lg is expressed as

Lg(xj ,xk, rjk) =
1

2
rjk‖φ(xj)− φ(xk)‖22+

1

2
(1− rjk)max(0, ε− ‖φ(xj)− φ(xk)‖22)

(2)

where φ(·) represents the feature transformation via GSNet,
rjk ∈ {0, 1} indicates that xj and xk are the same object or
not, and ε denotes the minimum distance margin.
Local Siamese network (LSNet): The LSNet is used to ex-
plore local representation for matching. As shown in Fig. 2
(the green flow), LSNet comprises two CNN branches bor-
rowed from VGGNet [19], except for layers after the 5th

pooling layer. Considering that local representation is sus-
ceptive to feature resolution, we designate LSNet with fewer
pooling layers. Specifically, we only utilize two max pooling
layers after conv1-2 and conv2-2. The features obtained from
the conv5-3 layers are then fed into attentional local part net
to generate salient object parts, which are concatenated to
form the local representation. Finally, a contrastive loss layer
is added to receive the local representations from LSNet. The
LSNet receives two same images xj and xk as in the GSNet,
and its contrastive loss Ll is computed as

Ll(xj ,xk, rjk) =
1

2
rjk‖ϕ(xj)− ϕ(xk)‖22+

1

2
(1− rjk)max(0, ε− ‖ϕ(xj)− ϕ(xk)‖22)

(3)

where ϕ(·) is the local representation obtained by the atten-
tional local part net in LSNet, as detailed in Section 2.2.

2.2. Attentional Local Part Net in LSNet

The core of LSNet is the proposed attentional local part net,
which aims to detect salient part maps, output the part feature
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Fig. 3: Illustration of the architecture of attentional local part
network. Best viewed in color and by zooming in.

of each part, and adaptively concatenate them with attention
to form the local representation.

As illustrated in Fig. 3, the attentional local part net con-
tains K branches, with each containing a convolutional layer
followed by a non-linear sigmoid layer. Each branch receives
feature from the conv5-3 layer in LSNet, and extracts a salient
object region as the output. Afterwards, we can generate part
features based on salient regions. Considering that for each
object, the local parts function differently in matching, we
propose an attention model to adaptively combine them.

For image x, let a 3-dimension tensor Fx ∈ RH×W×C

represent the feature obtained after conv5-3 in LSNet, which
is then fed to the part net. We can estimate the 2-dimension
salient part masks Mx

k ∈ RH×W for x as

Mx
k = ΨSalientPartMaskk (Fx), k = 1, 2, · · · ,K (4)

where ΨSalientPartMaskk
(·) is the kth salient part region ex-

tractor. Fig. 4 demonstrates the detected salient part masks
for objects in testing dataset.

With salient object map Mx
k , the corresponding part fea-

ture Fx
k ∈ RH×W×C for the kth region of x is computed as

Fx
k(x, y, c) = Fx(x, y, c)×Mx

k(x, y) (5)

where Fx(x, y, c) is the element in the cth channel over the
location (x, y) in Fx, and Mx

k(x, y) represents the element on
the location (x, y) in Mx

k . After obtaining the part feature, we
apply a global average pooling (GAP) operator on each Fx

k to
derive the final part feature fxk = GAP(Fx

k) ∈ R1×1×C .
Taking into account that each object part plays a differ-

ent role in matching, we use an attention model [21] to adap-
tively assign weight to each part. Mathematically, the atten-
tion model fatt(·, ·) is formulated as follows

exk = fatt(Watt, f
x
k ) = Watt(f

x
k )T (6)

αx
k =

exp(exk)∑K
k=1 exp(exk)

(7)

where Watt ∈ R1×C denotes the parameters of the atten-
tion model and can be learned end-to-end, and αx

k represents
the weight of the kth salient region of image x.

Once αx
k are computed, we concatenate all the part fea-

tures to derive ϕ(x) for x, followed by `2 normalization

ϕ(x) =

∥∥∥[αx
1 (fx1 )T, αx

2 (fx2 )T, · · · , αx
K(fxK)T]T

∥∥∥
2

(8)

part mark 1 part mark 2 part mark 3 part mark 4 part mark 5

part mark 1 part mark 2 part mark 3 part mark 4 part mark 5

target object

tracking result

target object part mask 1 part mask 2 part mask 3 part mask 4 part mask 5

tracking result part mask 1 part mask 2 part mask 3 part mask 4 part mask 5

Fig. 4: The extracted local salient part masks in our method.
The first column shows the target object (top row) in the first
frame and the tracking result (bottom row) in a subsequent
frame, followed by the learned local salient part masks.

With Equ. (8), we can calculate local representations ϕ(xj)
and ϕ(xk) for images xj and xk in the Equ. (3).

2.3. Matching based Visual Tracking

Once the training of CoSNet is completed, we use the learned
matching function fmatch(·, ·) as it is for tracking, without
any further update. To this end, we adopt the simple particle
filter framework. In the tth(t ≥ 2) frame, we sample n can-
didates {xt

i}ni=1 around the estimated position of the target in
the last frame, and compare these candidates with template
x1
obj in the first frame using fmatch(·, ·). The tracking result

x̂t is determined by the candidate which best matches x1
obj ,

x̂t = arg max
xt
i

fmatch(x1
obj ,x

t
i) (9)

where the matching function is mathematically computed as

fmatch(a,b) = wg φ(a)Tφ(b)︸ ︷︷ ︸
global template

+wl ϕ(a)Tϕ(b)︸ ︷︷ ︸
local representa.

(10)

where φ(·) and ϕ(·) are feature transformations via GSNet
and LSNet, respectively, and wg and wl denote the weights
of global template and local representation in final matching
which are adaptively computed as

wg =
φ(a)Tφ(b)

φ(a)Tφ(b) + ϕ(a)Tϕ(b)
, wl = 1− wg (11)

Fig. 5: Comparisons on OTB-100 using DPR and OSR. Our
CoSNet outperforms other state-of-the-art trackers.
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Table 1: Average DPR of 11 attributes. The best three results
are shown in red, blue and green fonts, respectively.

Att. SiamFC CFNet MEEM Staple SINT BACF HCF CoSNet

IV 0.735 0.757 0.740 0.791 0.816 0.808 0.817 0.858
OPR 0.745 0.753 0.798 0.742 0.814 0.777 0.810 0.827
SV 0.743 0.748 0.740 0.731 0.750 0.778 0.802 0.803

OCC 0.696 0.713 0.741 0.726 0.756 0.728 0.767 0.830
DEF 0.676 0.669 0.754 0.748 0.745 0.759 0.791 0.812
MB 0.698 0.761 0.721 0.726 0.747 0.753 0.797 0.798
FM 0.730 0.741 0.734 0.703 0.739 0.784 0.797 0.763
IPR 0.748 0.803 0.793 0.770 0.830 0.778 0.854 0.830
OV 0.678 0.650 0.683 0.661 0.720 0.765 0.677 0.736
BC 0.694 0.737 0.751 0.770 0.782 0.833 0.847 0.877
LR 0.834 0.861 0.605 0.609 0.786 0.707 0.787 0.789

Overall 0.757 0.777 0.781 0.784 0.789 0.815 0.837 0.842

3. EXPERIMENTS

3.1. Implementation details

We train CosNet using ALOV dataset [22] as in [13]. It is
worth noting that we exclude all videos in ALOV that are also
in our evaluation benchmark OTB-100. We utilize the param-
eters of VGGNet to initialize both GANet and LSNet. After
that, we fine tune the CoSNet using Caffe [23] for 80 epochs.
The initial learning rate for fine tuning is 0.001, and decreased
by a factor of 10 after every 5 epochs. The weight decay pa-
rameter is set to 0.001, and batch size is 1.

Our CoSNet is implemented in Matlab using Caffe wrap-
per, and runs at around 3 frames per second (fps) on a PC
with an i7 Core CPU and a NVIDIA GTX 1080 GPU. In each
frame, we sample 200 (n = 200) candidates in translation
and scale dimension from a Gaussian distribution for match-
ing. The number K of object parts is empirically set to 5.

3.2. Experiments on OTB-100

We evaluate CoSNet on OTB-100 [16] and compare it to ten
algorithms, including CFNet [18], BACF [24], fDSST [25],
SINT [13], HCF [7], SiamFC [12], LCT [26], MEEM [27],
Staple [4] and KCF [3]. As in [16], we use distance precision
rate (DPR) and overlap success rate (OSR) for evaluation.

We report the comparison results in one-pass evaluation
as shown in Fig 5. Overall, CoSNet achieves the best per-
formance with a DPR of 84.2% and an OSR of 63.1%. Com-
pared with the second best trackers HCF with a DPR of 83.7%
and BACF with an OSR of 61.7%, CoSNet obtains the im-
provements of 0.5% and 1.4% in DPR and OSR, respectively.
Compared to SINT with a 78.9% DPR and a 59.2% OSR,
CoSNet obtains the gains of 6.2% in DPR and 3.9% in OSR,
showing the power of local representation.

In order to further analyze the performance of CoSNet,
we conduct attribute-based evaluation on OTB-100 [16], and
compare CoSNet to seven tracking approaches in DPR and
OSR as shown in Tab. 1 and 2. For DPR, CoSNet achieves the
best results under 7 out of 11 attributes including IV, OPR, SV,
OCC, DEF, MB and BC. For IPR, OV, FM and LR, the pro-
posed CoSNet ranks in top three, showing competitive perfor-

Table 2: Average OSR of 11 attributes. The best three results
are shown in red, blue and green fonts, respectively.

Att. SiamFC CFNet MEEM Staple SINT BACF HCF CoSNet

IV 0.549 0.574 0.517 0.598 0.625 0.630 0.540 0.644
OPR 0.544 0.553 0.528 0.538 0.600 0.581 0.537 0.611
SV 0.555 0.555 0.473 0.529 0.564 0.579 0.488 0.590

OCC 0.523 0.536 0.503 0.548 0.574 0.567 0.525 0.624
DEF 0.490 0.492 0.489 0.554 0.550 0.572 0.530 0.598
MB 0.555 0.593 0.543 0.558 0.588 0.582 0.573 0.614
FM 0.564 0.570 0.528 0.541 0.567 0.596 0.555 0.598
IPR 0.557 0.590 0.528 0.552 0.599 0.575 0.559 0.607
OV 0.511 0.480 0.484 0.481 0.553 0.552 0.474 0.570
BC 0.504 0.545 0.521 0.574 0.591 0.623 0.587 0.647
LR 0.604 0.619 0.355 0.411 0.543 0.512 0.424 0.563

Overall 0.565 0.586 0.529 0.581 0.592 0.617 0.562 0.631

CoSNet

BACF

SINT

Staple

CFNet

SiamFC

HCF CoSNetBACFSINTStapleCFNetSiamFCHCF

Fig. 6: Qualitative evaluation of CoSNet and other six state-
of-the-art trackers on several challenging sequences.

mance. For OSR, CoSNet achieves the best results under 10
out of 11 attributes including DEF, OPR, SV, OCC, IPR, IV,
MB, FM, OV and BC. In the challenge of LR, our CoSNet
still obtains the third ranking score.

Fig. 6 shows the qualitative results of CoSNet on four se-
quences. We observe that our tracker is able to deal with var-
ious challenges such as occlusion, deformation and rotation,
while other tracker can only handle several of them.

4. CONCLUSION

This paper proposes the CoSNet for tracking. The CoSNet
comprises two complementary networks, GSNet and LSNet,
to exploit both global and local representations of target ob-
ject for tracking. By coupling two complementary cues, we
learn a robust matching function from a large set of videos
and deploy it for tracking without adaption. Experiments on
a large-scale dataset evidence the effectiveness of CoSNet.
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