
ROBUST VISUAL TRACKING VIA ADAPTIVE OCCLUSION DETECTION

Yueyang GU, Xiaoguang NIU, Yu QIAO⋆

Intelligence Learning Laboratory, Department of Automation, Shanghai Jiao Tong University, China
Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai

{guyueyang, 2012657, qiaoyu}@sjtu.edu.cn

ABSTRACT
Occlusion is a special challenge in visual tracking, which
may cause target template corrupted by background informa-
tion. In this paper, we propose an adaptive occlusion detec-
tion framework for robust tracking against occlusion. The
framework consists of a patch tracker, an occlusion detector,
a template updater and a search window predictor. The patch
tracker applies KCF-based method to track background patch
individually, which may occlude target. The occlusion detec-
tor searches for background patches occluding target with an
adaptive threshold. The template updater evaluates the oc-
clusion state and applies appropriate target template update
strategy. The search window predictor adaptively rescales
the size of search window based on occlusion state. Exper-
iments in OTB50 demonstrate that our tracker achieves com-
parable performance compared with other state-of-art trackers
and outperforms them in cases of occlusion.

Index Terms— Visual tracking, occlusion detection, oc-
clusion patch candidate, occlusion mask, adaptive search win-
dow

1. INTRODUCTION

Visual tracking is one of the most appealing fields in computer
vision [1, 2, 3], etc.. Numerous tracking algorithms have been
proposed. Correlation filter (CF) was used in visual track-
ing [4, 5, 6, 7, 8] and achieved good tracing results. They may
well handle slight occlusion with low learning rate, such as s-
light partial occlusion in one or two frames. But they may fail
in heavy or complete occlusion, such as complete occlusion in
sequences ”Coke” and ”Jogging”. Because these algorithm-
s have no capacity to identify occlusion and treat occlusion
as appearance variation. They update target template with
background information in complete occlusion. Consequent-
ly, trackers may drift from target or even fail to track since
target template has already been corrupted by background in-
formation. Part-based trackers [9, 10, 11, 12] divide target in-
to several individual parts and track them simultaneously. The
template will be partial updated if tracking confidence of the
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part is high. However, both appearance variation and occlu-
sion may lead to the drop of tracking confidence. Part-based
trackers can not handle fast appearance variation because they
stop template update in cases of appearance variation due to
low tracking confidence.

In fact, the template update strategy for all tracking meth-
ods is totally different in cases of occlusion and appearance
variation. The template requires fast update in condition of
appearance variation such that the tracker can capture the tar-
get variation. On the contrary, the template requires to stop
update in condition of occlusion such that the target template
can be prevented from corruption of background information.
Therefore it is an inevitable problem for all tracking methods
to distinguish occlusion and target appearance variation.

In order to deal with occlusion, Niu and Qiao [13]
proposed the Context-based Occlusion Detection frame-
work (COD), which is designed for occlusion detection.
COD is a KCF-based method only used to track background
patches surrounding target. These background patches are
treated as context information and may be candidates that
occlude target in following frames. Therefore COD is not
used for target tracking but provided occlusion information to
target tracker for appropriate template update strategy. If the
occlusion is detected by COD, the target tracker can stop up-
dating template. COD can be integrated with various tracking
approaches [14, 15] and improved their robustness against
occlusion. However, there are some drawbacks in COD.
Firstly, a fixed number of background patches are randomly
selected in current frame, which may cause lack or redundan-
cy of sampled background patches (Fig. 2). Secondly, COD
adopted a pre-defined thresholds to evaluate the occlusion
patches, which may not work well in various cases. Thirdly,
COD selects template update strategy based on the amount of
occlusion patches. It may not work if these occlusion patches
may overlap at the same location tracked based on different
background patches. The slight occlusion may be falsely
treated as heavy occlusion.

In this paper, we propose an adaptive occlusion detec-
tion framework. It consists of a patch tracker, an occlusion
detector, a template updater and a search window predictor.
The patch tracker utilizes KCF-based approach to track all
background patches that may occlude target. The occlusion
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Fig. 1. Adaptive occlusion detection framework.

detector evaluates occlusion patch candidates with an adap-
tive threshold. The template updater establishes an occlusion
mask according to the results of occlusion detection. The tar-
get template is updated in cases of non or slight occlusion
and stop if heavy or complete occlusion occurs. The search
window predictor introduces an adaptive search window by
rescaling the search window size in cases of occlusion. In
this way, the occluded target may be located in a larger search
window when it appears again in the image.

The contributions of this paper are as follow: (1) an oc-
clusion mask is proposed to illustrate occlusion state; (2) the
size of search window is adaptively rescaled; (3) an adaptive
threshold is used for occlusion patch evaluation; 4) an adap-
tive strategy is applied to select background patches.

(a) (b) (c)

Fig. 2. Visualized results of patch trackers (first row:
COD [13], second row: our method): (a) background patch
redundancy in COD; (b) the lack of patches in COD; (c)
the occlusion detection results. Yellow: bounding box, blue:
background patch, red: occlusion patch.

2. PROPOSED FRAMEWORK

In this section, we present our proposed adaptive occlusion
detection framework (Fig. 1) in detailes. In our framework,
background patches surrounding target bounding box are
treated as context information. The occlusion patch is defined
as the background patch obtained in previous frames that
occludes the target. Obviously, both occlusion patches and
current background patches are key context information for

occlusion detection.
An occlusion patch candidate (OPC) set is introduced for

occlusion detection in current frame. The current OPC set is
regarded as key context information collected from last frame.
It consists of two kinds of patches: (1) background patches
surrounding bounding box in last frame; (2) occlusion patch-
es of last frame. Obviously, occlusion patches are actually
background patches obtained in previous frames. All patches
in current OPC set may be the candidates to occlude the tar-
get in current frame. Therefore our framework is an adaptive
context-based occlusion detection method. After occlusion
detection, current OPC set is updated with background and
occlusion patches in current frame.

2.1. Patch Tracker

In our framework, the patch tracker is designed to track all
patches in current OPC set. These tracked patches are context
information collected from last frame. We apply linear KCF
tracker [16] as the patch tracker with linear kernel:

kxx
′
= F−1(x̂∗ ⊙ x̂′), (1)

whereˆmeans DFT, F−1 means inverse DFT, ∗ means com-
plex conjugation. The patch tracker outputs the location of
individual patch of the OPC set in current frame.

2.2. Occlusion Detector

Occlusion indicates that some background patches come in-
to the bounding box. The location of all patches in current
OPC set are examined by the occlusion detector. There are
two kinds of patches located within the bounding box: (1)
the patch occluding target; (2) the patch occluded by target.
Fig. 3 presents two kinds of patches in the bounding box and
their response map.

Peak-to-Sidelobe Ratio (PSR) [17] is used as the criteri-
on to distinguish the above mentioned patches. This criteri-
on represents not only the intensity of response map but also
sharpness of the peak. We set an adaptive threshold for every
patches exploiting k historic PSRs of patches locating at the
same relative position about target:
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Fig. 3. (a) Two kinds of patch in bounding box, red: bounding
box, black: patch occluding target, yellow: patch occluded
by target; (b) response map of the patch occluding target; (c)
response map of the patch occluded by target.

T
(t+k)
i =

k−1∑
j=0

wj ∗ f(Rt+j
i ) (2)

wj =
ej∑k−1
j=0 e

j
(3)

where T t+k
i denotes the threshold for ith patch in t + kth

frame, f(·) means calculating PSR of input map, Rt+j
i is the

response map of ith patch in t + jth frame, wj is the weight
for PSR in t + jth frame. In fact, the T t+k

i is the weighted
mean of f(Rt+j

i ).
Those patches located within the bounding box are evalu-

ated with PSR and classified into occlusion patch and patches
occluded by target. The current OPC set is updated with cur-
rent context information. Only the patches occluding target is
included in updated OPC set. Other patches in previous OPC
set are discarded. These patches may be occluded by target or
locate outside current bounding box.

The updated OPC set also includes new context informa-
tion of current frame, which are new background patches sur-
rounding current bounding box. In our framework, the num-
ber of background patches to be tracked is determined by the
size of current bounding box. The number of each horizontal
and vertical side can be obtained by:

Nh =
⌈w
a

⌉
Nv =

⌈
h

a

⌉
(4)

where ⌈·⌉ means the rounding up operation, w, h are the width
and height of bounding box, a is the side length of patch. Af-
ter Nh, Nv is obtained, all patches are located surrounding
the bounding box such that they do not intersect each other
and leave no space along four sides of the bounding box. The
second row in Fig. 2(a) and (b) shows two examples of back-
ground patches. Fig. 2(c) presents the results of occlusion
patch detection with COD and our method respectively.

2.3. Template Updater

Before tracking a new frame, the template updater first es-
tablishes an update mask as the same size as the input image

with 1 denoting target pixels and 0 denoting others. When the
occlusion detector outputs the location of occlusion patches,
the corresponding elements are set to be 0. The proportion
of non-occluded area is used to evaluate occlusion state and
calculated by

φ =
Sum(M)

Are(M)
(5)

where M is the update mask, Sum(M) is the number of ele-
ments 1 in M and Area(M) is the number of all elements in
M . The occlusion state is classified into 3 cases with φ: (1)
non-occlusion; (2) partial occlusion; (3) heavy occlusion.

Then the template in frame t can be updated by

xt = xt−1 ∗ (1− α) + xt−1 ∗ α ∗ δ(φ1 − φ)+

xc ∗ α ∗ (1− δ(φ1 − φ)) (6)

where xt−1 is the template in frame t − 1, xc is the im-
age in current bounding box, α is the learning rate, φ1 is
the threshold to distinguish the states of occlusion and non-
occlusion, δ(·) is unit step function. If the target is occluded,
then δ(φ1 − φ) = 1, xt = xt−1, the template keeps un-
changed. Otherwise, the target template is updated with the
learning rate α, xt = xt−1 ∗ (1− α) + xc ∗ α.

2.4. Search Window Predictor

In case of occlusion state (3) (heavy occlusion), tracking
results may drift from ground-truth since the appearance of
target is covered by background information. Our proposed
search window predictor adaptively rescales search window
size in order to capture the feature of target when bound-
ing box drifts from ground-truth due to heavy or complete
occlusion.

In the first frame, we train n correlation filters exploiting
images with different sizes centered on the target. The sizes
are selected in the following size pool:

S = ai ∗ S0 ai ∈ a1, a2, ..., an (7)

where ai is size coefficients and S0 is basic size. The search
window predictor expands the size of search window in cas-
es of heavy or complete occlusion. It recovers the original
window size if occlusion is not observed. Here, we use ηt to
denote the temporal state of occlusion in tth frame:

ηt =

{
ηt−1 + 1 φ < φ2

max(ηt−1 − 1, 1) φ > φ2
(8)

where φ can be obtained by Eq. 5, φ2 is the threshold to
distinguish states of partial and heavy occlusion.The sigmoid
function is utilized to calculate the window size index:

i = [
n

1 + e0.5∗(η−b)
] (9)

where [·] means rounding operation, n is the number of sizes
in size pool, b is bias which translate the function along the
X axis and i is the index of a. Therefore, the size of search
window in next frame is ai ∗ S0.
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3. EXPERIMENT AND DISCUSSION

3.1. Set up

To validate the performance of proposed framework, we run
our tracker and other state-of-art trackers on OTB50 [1]. In
experiments, the size of background patches is 13*13, the
critical value φ1 and φ2 are 0.75 and 0.25, the length of size
pool is 7, bias b is 5. Other parameters are same as the KCF
tracker [16].
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Success plots of OPE - illumination variation (25)
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Fig. 4. Successful plot on OTB50. The AUCs of each tracker
are presented on the top right corner of plot.

3.2. Quantitative Evaluation

Center Location Error (CLE) is not suitable for different
sizes of targets. We select Overlap Ratio (OR) as the met-
ric and draw Success Plot with threshold from 0 to 1. The
performance of trackers can by obtained by Area Under
Curve (AUC). We conduct One Pass Evaluation (OPE) with
our tracker and 32 others trackers (KCF [16], DSST [18],
COD [13] and 29 trackers evaluated in [1]) on OTB50. Here
we present the top-10 results in Fig. 4. Our tracker achieves
the best results and improved 21.98% and 7.36% compared
with KCF and COD on overall performance. Attribute-based
evaluation (Fig. 4) shows that our tracker also presents com-
petitive performance due to distinguishing occlusion from
appearance variation caused by deformation or illumination
variation. It is worthy to note that other trackers without oc-
clusion detection module get poor performance on occlusion
sequences while our tracker can run better results.

3.3. Qualitative Evaluation

Fig. 5 is a typical example to demonstrate that our occlusion
detection framework can avoid template corruption by occlu-
sion object effectively. The coke can moves behind leaves and

then move up to leave green leaves. Our template keeps un-
changed during occlusion (Fig. 5(c)) while templates of other
KCF-based trackers have been corrupted by leaves (Fig. 5(d)).
Therefore,only our tracker can track successfully in this case.

Fig. 6 is another example to show the effect of search
window predictor. The jogging woman is occluded by the
telegraph pole. Other trackers fail to track it after she is not
occluded (Fig. 6(d)). Even though the target appears again,
they can not re-capture since the target is not in their search
window (Fig. 6(c)). Our search window predictor expands the
size of search window to ensure that the target may be includ-
ed in the expanded search window (Fig. 6(c)). In this way,
the search window predictor avoid the problem caused by the
fixed search window during occlusion.

(a) (b) (c) (d)

Fig. 5. ”Coke” sequence: (a) tracking results; (b) tracking re-
sults; (c) template of ours; (d) template of KCF. Green: CSK,
blue: KCF, black: DSST, yellow: COD, red: our method:

(a) (b) (c) (d)

Fig. 6. ”Jogging” sequence: (a) tracking results before occlu-
sion, green: CSK, blue: KCF, black: DSST, yellow: COD,
red: our method; (b) occlusion detection results, blue: oc-
clusion patches; (c) search window of trackers; (d) tracking
results after occlusion, green: CSK, blue: KCF, black: DSST,
yellow: COD, red: our method.

4. CONCLUSION

In this paper we propose an adaptive occlusion detection
framework. Our framework utilizes an adaptive threshold
to detect occlusion patches. The template will not be cor-
rupted by background information based on occlusion state
evaluation. The target will not drift from adaptive search
window selected by search window predictor. Experimental
results show that our tracker achieve competitive perfor-
mance against other state-of-the-art trackers and improve the
robustness against occlusion.
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