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Abstract—In this paper, we propose a novel video coding
scheme to significantly reduce the coding complexity and
enhance overall coding efficiency in videos acquired by high
mobility devices such as unmanned aerial vehicles (UAVs). In
order to reduce the encoded data bits and encoding time to
facilitate real-time data transmission, as well as minimize the
image distortion caused by the jitter of onboard camera, a
sensor-assisted global motion estimation (GMV) algorithm is
designed to calculate perspective transformation model and
global motion vectors, which are used in both the inter-
frame coding to improve the coding efficiency and intra-
frame coding to reduce block search complexity. We conducted
comprehensive simulation experiments on official HM-16.10
codec and the performance results show the proposed method
can achieve faster block search by 50% to 60% speedup and
lower bitrate by 15% to 30% compared with standard HEVC
coding software.

Index Terms—HEVC, sensor-assisted global motion estima-
tion, low delay

I. INTRODUCTION

In recent years, one of the predominate focuses of
wireless communication systems is the support of mul-
timedia services. The use of UAVs equipped with high
definition cameras is rapidly growing in the tasks such
as video reconnaissance, exploitation, and surveillance. In
the near future, video stream will account for over 80%
of consumer Internet traffic according to [1]. The using
of ultra high definition videos with high framerate and
multi view will raise new challenges to video transmission
tasks. Therefore, it is vital to investigate efficient video
compression algorithms for wireless multimedia services.

H.265/HEVC is the latest video coding technology
whose predecessor is H.264/AVC. In benchmark video
compression standards, such as H.265/HEVC, global mo-
tion estimation (GME) is not adopted due to its suboptimal
rate-distortion performance and complexity. The motion of
each coding unit in UAV video stream is composed of
camera and foreground object motion. GME is a technique
that attempts to find the perceptive projection matrix be-
tween two images for video processing of high-mobility
systems [2]. Differing from region ME which attempts to
find the corresponding position of each individual pixel
in its reference pictures, GME identifies the background
motion introduced by the camera to obtain a stable and
smooth video. GME requires much cheaper computation

compared with local ME (LME), but can achieve high
resolution image compression and transmission [3].

Image-based GME has already been integrated in MPEG-
4 verification model [4] which supports translation motion.
The authors of [5] suggested that the motion information
can be used to merge blocks. A sensors-aided video encod-
ing method (SaVE) that calculates the rotation movement
of the camera for H.264 is proposed [6], and this method
outperforms standard H.264 by 27% speedup. An approach
called Sensor-assisted Motion Estimation (SaME) was pro-
posed to estimate the global linear displacement [7], SaME
focus on linear displacement estimation. A low-complexity
video encoder using affine model and a matched decoder is
proposed to get rid of block-level motion estimation within
group of pictures (GOP) [3]. This method has proved to be
outstanding in reducing bitrates but sacrifices video quality.

For many UAV videos, large translation and rotation and
scaling exist between adjacent frames. The image frames
might move out of the search window or image distortion
caused by rotation/zoom might result in prediction unit
block matching algorithms failure. The compression ratio
deteriorates significantly if the block matching algorithm
fails.To provide a global motion model that fits a wide range
of mid-altitude UAVs, the authors of [2] propose to derived
image coordinate system transform model from metadata.
A low delay and low complexity video encoding for UAV
inspection application is presented in [8] which replace
inter-frames using homography matrix. Authors of [9], [10]
also use metadata to build georeferencing model for mid-
altitude fixed-wing UAVs image geometric correlation.

The major contribution of this paper includes: First, a
novel method for fast motion vector prediction is pro-
posed, and the sensor-assisted GME method is implemented
based on HM-16.10 software. Second, we confirm that
by performing perspective transformation, the multiscale
structural similarity (MS-SSIM) between adjacent frames
is increased. And last, we built our UAV video dataset
with corresponding sensor log information which dataset
provides an important source for future sensor assisted
video codec research.

The remaining of the paper is as follows: Section II intro-
duces the sensor-assisted video coding software framework
and our method, the using of perspective transformation
model and global motion vectors. Section III provides ex-
periment results to study the performance of our framework

2237978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Camera coordinate system

Image coordinate system

Ground coordinate system

XC

YC

ZC

OC

XI

YI

ZI
OI

P (xi, yi,−f)

A(X, Y )

XG

ZG

YG

OG

Base station

Bitstream

Fig. 1: The wireless communication scenario of our sensor-
assisted video coding method and pinhole model.

Name Description

X speed vx Horizontal speed (X-axis), in yard
Y speed vy Horizontal speed (Y-axis), in yard
Z speed vz Vertical speed, in yard
Vehicle roll θ Euler angle (X-axis), in radians
Vehicle pitch φ Euler angle (Y-axis), in radians
Vehicle heading ψ Euler angle (Z-axis)n, in radians
Altitude d Terrain height, in centimeters

TABLE I: Sensor parameters used in the algorithm.

under different QPs and compares the overall performance
with standard HM-16.10. Finally, Section IV concludes this
paper.

II. METHODOLOGY

A. System model
The deployment scenario is illustrated in Fig. 1 which

shows a small UAV with onboard camera and sensors flying
around a base station within transmission range. Video
streams are captured by the onboard camera, while UAV
and camera motions are recorded by its sensors. The raw
video stream is encoded before being transmitted to the
receiver via wireless channel.

Fig. 2 describes the flow diagram of the proposed
methodology. The encoder takes video stream and corre-
sponding sensor log as inputs. The perspective transforma-
tion model (homography matrix) between image coordinate
system and ground coordinate system is computed and
updated once new frame and sensor data arrive. Raw image
frames firstly undergo perspective transformation to remove
undesired distortions caused by external motion. The GME
method completely relies on sensor information provided
by UAV system. An frame motion monitor is used in order
to determine whether large-scale motion exists between
two adjacent frames, if not, the encoding process could be
skipped by transmitting a 9-element homography matrix
(HM) instead. Otherwise, block matching process with fast
motion vector predictor (MVP) candidate list is executed
to locate the best local MV. Table. I shows the sensor data
used in our method.

B. Perspective transformation for UAV videos
The global motion of UAV video can be modelled by

a combination of motion of the UAV and camera. To

eliminate the distortion caused by those movements, a pro-
jection model is necessary for representing the relationship
of image coordinate system and ground coordinate system.

The HM is modelled with intrinsic and extrinsic param-
eters. Intrinsic parameters describe the mapping between
camera coordinates and image coordinates in the image
frame, while extrinsic parameters define the location and
orientation of the camera coordinate with respect to the
ground coordinate (See Fig. 1).

K =

⎡

⎣
1
sx

0 cx
0 1

sy
cy

0 0 1

⎤

⎦ (1)

where (sx, sy) is the width and height of a single pixel,
(cx, cy) is the horizontal and vertical offsets of camera.

Translation of the UAV between two time instances
can be obtained by constructing an extrinsic matrix. We
assume that the camera rotation and translation of F (t+1),
with respect to F (t), is denotes as R and T , respectively.
The rotation matrix between image coordinate system and
ground coordinate system can thus be obtained as

R = RψRφRθ (2)

where Rψ , Rφ, and Rθ denote heading rotation, pitch
rotation and roll rotation, respectively.

The displacement between image coordinate system and
ground coordinate system is represented as

T = [tx ty tz]
′ (3)

Hence, the perspective transformation at time t is defined
as follow:

Ht = K−1(R+
1

d
T )K (4)

where d denotes the altitude.
Hence, the calibrated image pair is expressed as follows

F ∗
t = HtFt

F ∗
t+1 = Ht+1Ft+1

(5)

C. Fast Motion Vector Predictor Estimation
After coordination transformation, the global displace-

ment of the UAV simply obeys a linear equation D =
[dx dy]′, where dx and dy denote the GMV at time t.

D∗ = [dx∗ dy∗]′ = [
dx

sx

dy

sy
]′ (6)

The translation between frame F (t) and frame F (t + 1)
can be expressed as follows

Ft+1 = H−1
t+1DHtFt = MFt (7)

In our software diagram, an image monitor based on
the idea of SSIM is placed before the prediction module
as shown in Fig. 3. Assuming Ftmp = MFt, the SSIM
between Ftmp and Ft+1 is calculated. If SSIM satisfies
a given threshold, then Ft+1 will not be processed by the
encoder, but 9-element Ht+1 will be transmitted instead.
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Fig. 2: The flow diagram of the proposed sensor-assisted video coding approach.
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Fig. 3: The dropping out process. If two adjacent frames
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D = ⃗GMV = [dx/sx, dy/sy]
F

∗

t+1

F
∗

t

P ∗

t

P ∗

t+1

YG

XG

⃗P ∗

t
P ∗

t+1 = [dx, dy]

Fig. 4: The method of GMV calculation for the current
block, where P ∗ denotes the central point of a frame.

The frame Ft+1 can be reconstructed from Ht, Ft and Ht+1

at the decoder end.
If the sensor information as well as the multiplication

are absolutely accurate, M can represent the global motion
from Ft to Ft+1, and thus F ∗

t is similar to Ft+1. However,
due to the UAV sensor measurement error and local motion
existing between block range, in fact in most of the cases M
cannot represent the best motion for each block. Therefore,
the encoder has to execute block matching algorithms to
find the best candidate MVs for those blocks.

We notice that in our aerial video coding process, coding
blocks belonging to the background area tend to share MVs
pointing to a same directory. This means that those blocks
follows the global motion and the best MV of a current
block has strong correlation to its spatial neighbours. Also,
the blocks belonging to the foreground objects are likely to
have similar LMVs of their decoded neighbours. Inspired
by the work [11], we implement our fast ME process within
two steps, initial candidate list and block matching search.
Similar to the candidate list used in standard HEVC, our

Current
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MVTop(MVT )

MeanMV (MVL,MVTR,MVT )

Candidate List = [MeanMV, GMV ]

Fig. 5: The example of choosing spatial MVs from neigh-
bouring blocks and filling the candidate list for the current
block.

candidate list is filled up by two MVPs, one is the GMV
from sensor information which represents the temporal
correlation between reference frame and current frame (See
Fig. 4), the other is a mean of neighbouring MVs (as shown
in Fig. 5).

MeanMV = Mean(M⃗V L, M⃗V TR, M⃗V T ) (8)

If the total elements in candidate list is less than two (for
instance, spatial MVs are not available), a zero MV(0, 0)
will be added to fill the candidate list. Thus, the candidate
MV list (if both temporal MV and spatial MV are available)
is shown as

Candidate List =

{
M⃗V 0 = D, GMV
M⃗V 1 = MeanMV, LMV

(9)

Fig. 5 shows the neighbouring blocks (on the left, up, and
up-right) of the current block and the MVs are denotes as
M⃗V L, M⃗V TR, and M⃗V T , respectively. The best predictor
is determined by Lagrangian RD cost function, block
matching algorithm is performed on the TZSearch window
with search range bw after the best MVP is known.

III. EXPERIMENTS

The experiments were conducted on a Linux server based
on the standard HEVC codec software HM-16.10. Our
dataset was divided into four groups, which are (0, 3m),
(3m, 6m), (6m, 15m), and (15m, 30m). The experimental
results in low-altitude UAV video indicate that our method
are still effective for processing videos collected at higher
altitudes.
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frame size (960 × 576)
Altitude QP YPSNR YSSIM Bytes Time(sec)

(0, 3m)
22 38.5230 0.9965 30679 21.5029

37.8756 0.9963 29225 10.7863

37 28.5315 0.9495 1927 9.2817
28.0909 0.9428 1910 4.6961

(3m, 6m)
22 37.6262 0.9971 47709 19.7987

37.4478 0.9951 26344 8.2494

37 26.5360 0.9488 3473 7.2409
26.9727 0.9315 2057 3.6333

(6m, 15m)
22 38.0860 0.9954 27942 19.6222

37.7808 0.9939 18429 6.164

37 27.9549 0.9339 1041 8.1853
28.2629 0.9357 928 2.9248

(15m, 30m)
22 38.9303 0.9952 24054 20.6611

39.4416 0.9956 16432 6.9023

37 28.3769 0.9313 1554 8.4918
30.1734 0.9440 961 2.5265

overall
22 38.7784 0.9954 25288 20.6549

38.3579 0.9951 19790 7.2743

37 28.8427 0.9345 1325 8.5330
28.7104 0.9326 1226 2.7378

frame size (1920 × 1080)
Altitude QP YPSNR YSSIM Bytes Time(sec)

(0, 3m)
22 40.4066 0.9964 121311 107.1858

39.2895 0.9959 100026 88.1690

27 30.1515 0.9535 5556 102.9819
29.6826 0.9355 5135 37.3786

(3m, 6m)
22 39.5452 0.9972 150474 92.4641

38.8273 0.9955 146783 69.3481

37 28.2041 0.9512 10445 34.4790
28.7090 0.9413 6130 25.8592

(6m, 15m)
22 39.9973 0.9957 126991 87.8458

39.1881 0.9945 92668 54.8097

37 29.5621 0.9420 4066 34.3467
29.3384 0.9250 4479 21.4300

(15m, 30m)
22 38.2535 0.9955 115047 87.5826

39.3062 0.9957 98076 46.0662

37 30.0811 0.9409 4373 43.1807
29.6293 0.93142 4905 19.6568

overall
22 39.0130 0.9957 120602 91.6711

39.1977 0.9953 110838 58.0617

37 29.8948 0.9429 4594 33.9552
29.3981 0.9310 5571 20.4627

TABLE II: The Video coding results. Results of HM-16.10 are given in the first row (in black) of each group; our results
are given in the second row (in blue). YPSNR and YSSIM are used to measure the reconstructed video quality.

MaxCUHeight 64
MaxCUWidth 64
MaxCUDepth 4

Quantization Parameter (QP) [22, 27, 32, 37]
Motion Estimation Method TZSearch

Search Range [-16, 16]
Coding Profile low delay main P

TABLE III: Experiment configuration conditions.

The configuration setting can be found in Table. III. To
evaluate the performance of our method, we compare the
quality achieved by our proposed method (in blue) and
HEVC in terms of PSNR, SSIM, average bytes, and average
encoding time across all P frames.

If one or more video frames is ignored by the encoder,
the difference between reference frame and current frame
accumulates as it can be expected. Table.II demonstrates
the summary of encoding results with H frames. It can
be seen that the proposed method efficiently improve the
compression ratio while the image quality degradation is
small. For instance, with QP = 22 and altitude (6m, 15m),
the average bytes of our sensor-assisted method is 73% of
HM-16.10’s, while the PSNR of Y-channel is 0.5dB less
than HM-16.10’s. The motion of camera contributes to the
coding efficiency, with altitude (3m, 6m) where the UAV is
climbing up swiftly, the coding blocks are divided into more
quad-tree blocks in HM-16.10, while the sensor-assisted
HM takes advantage of the GMVs in finding matching
blocks. With regard to time consumption, our algorithm can
save up to 60% of the inter-frame encoding time of HM-
16.10’s. The second experimental result in Table.II shows
that our proposed method is able to cover variety UAV
movements at different definitions.

The second experiment compares the encoding perfor-
mance of HM-16.10 and our method using videos of
different framerate and definition (with QP = 22). The
results shown in Fig. 6 suggest that our method supports
videos under difference resolution and framerate. In the
case of 1920 × 1080 videos at 30fps. great benefit of
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Fig. 6: Left: 1920×1080 video at 30fps and 60fps, where
the red bar denotes HM-16.10 and the blue pattern bar
denotes ours. Right: 960 × 576 and 1920 × 1080 videos
at 30fps, where the red bar denotes HM-16.10 and the
blue pattern bar denotes ours.

our method can be observed from the plot, showing 50%
time saving and 15% bytes saving, at the cost of −0.5dB
YPSNR gain, while compared with HM-16.10’s.

IV. CONCLUSION

In this paper, we proposed a sensor-assisted global mo-
tion estimation method aiming to trade-off reconstructed
image quality and encoding time and complexity. Our
experiment results show that the proposed method is able
to reduce the average encoding time by 50% to 60% and
the average number of bytes by 15% to 30%, while the
average YPSNR and average YSSIM remain the same level,
comparing with the HM-16.10. The proposed method is
especially useful for low-delay or nearly real-time video
transmission tasks, as well as low power platforms such
as small UAVs and wireless sensor nodes in which light
computation is essential.
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