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ABSTRACT
Video Object Tracking -VOT- in realistic scenarios is a

difficult task. Image factors such as occlusion, clutter, con-
fusion, object shape, and zooming, among others, have an
impact on video tracker methods performance. While these
conditions do affect trackers performance, there is not a clear
distinction between the scene content challenges like occlu-
sion and clutter, against challenges due to distortions gener-
ated by capture, compression, processing, and transmission of
videos. This paper is concerned with the latter interpretation
of quality as it affects VOT performance. The contribution of
this paper is two-fold. We have constructed a database of 537
surveillance videos containing different levels of authentic
distortions such as low exposure and out-of-focus. It is avail-
able at https://tinyurl.com/DSVD-Test. Based
on this database, we assessed seven state-of-the-art trackers
with the A-R plot performance measure. We demonstrate
that in-capture distortions severely hamper VOT methods
performance in a non intuitive way.

Index Terms— Video Object Tracking, Video Quality
Assessment

1. INTRODUCTION

VOT is a well studied and fast-advancing field. It remains
a challenging task since only the initial state of the target is
available. Despite the plethora of VOT methods existing in
the literature, there is a lack of a detailed study analyzing
performance on videos with authentic in-capture and post-
capture distortions. Such a study requires a database with
videos containing distortions mentioned above in a controlled
and quantifiable way. In [1] the authors proposed a stan-
dard set of evaluation measures for VOT 2017 [2, 3]. How-
ever,this dataset lacks of sequences with videos including in-
capture and post-capture distortions in outdoor or indoor en-
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vironments. A significant number of video quality databases
have been designed in the recent years [4–8]. These databases
have been generated by systematically distorting, in a con-
trolled manner, a small set of high-quality videos. In fact,
most of the existing VOT and Video Quality Assessment -
VQA- datasets do not contain simultaneously in-capture and
post-capture distortions or only have a single distortion type
[9]. Furthermore, these databases do not include authentic in-
capture distortions [10].

Deepti et al presented in [11] a video database contain-
ing in-capture distortions for VQA. It comprises a total of
208 videos captured using eight different smart-phones. The
videos in this database contain six common in-capture distor-
tions such as artifacts, color, exposure, out-of-focus, sharp-
ness, and stabilization. For instance, Tsifouti et al. [12] gen-
erated degraded datasets that allow testing how video com-
pression and frame rate reduction affects the performance of
video-analytic systems. In this way, they were able to report,
an increased false positive ratio due to compression methods.
They concluded that performance depends on the specific im-
plementation of the compression software used, on the target
bit rate, and on the frame rate. In spite of these advances, to
the extent of our knowledge, very little work has been done
on the construction databases affected by in-capture distor-
tions for video surveillance applications.
This paper introduces a distorted video surveillance dataset

affected by in-capture distortions acquired by four different
surveillance cameras and analyzes the impact of real-world
in-capture distortions on state-of-the-art VOT methods. The
introduced video dataset is suited for testing VOT methods
in a varied content of indoor and outdoor scenes of interest
to test tracking algorithms. The paper is structured as fol-
lows. The set of analyzed trackers are described in Section
2. Applied VOT evaluation metrics along with the introduced
authentically distorted video dataset are described in Sections
3 and 4, respectively. Conducted analysis and obtained results
are shown in Section 5. Conclusions are stated in Section 6.

2. VIDEO OBJECT TRACKERS

A high performance on the VOT 2017 [1] and VOT 2018 [14]
challenges was considered as the criterion for choosing the
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analyzed methods.
C-COT tracker learns a discriminative continuous convo-

lution operator as its tracking model [13]. It poses the learning
problem in the continuous spatial domain. This enables a nat-
ural and efficient fusion of multi-resolution feature maps, e.g.
when using several convolutional layers from a pre-trained
CNN. The continuous formulation also enables highly accu-
rate localization by sub-pixel refinement [14].

Multi-Cue Correlation Filters for Robust Visual Tracking
(MCCT) [15] combines different types of features. It con-
structs multiple experts through Discriminative Correlation
Filter -DCF- tracking the target independently, in each frame.
The divergence of multiple experts reveals the reliability of
the current tracking, which is quantified for adaptively updat-
ing the experts and keep them from corruption. For estimat-
ing target scale, MCCT follows the DCCT tracker. The expert
with the highest robustness score is selected after evaluating
the overall reliability of each node [1].

Efficient Convolution Operators for Tracking -ECO- [16],
improves both speed and performance by introducing several
efficient strategies. ECO addresses the problems of compu-
tational complexity and over-fitting in state-of-the-art DCF
trackers by introducing: (i) a factorized convolution opera-
tor, which drastically reduces the number of parameters in the
model; (ii) a compact generative model of the training sam-
ple distribution, that significantly reduces memory and time
complexity, while providing better diversity of samples; (iii)
a conservative model update strategy with improved robust-
ness and reduced complexity [1].

The Discriminative Scale Space Tracker -DSST- [17] ex-
tends the Minimum Output Sum of Squared Errors -MOSSE-
tracker [18] with robust scale estimation. The DSST addition-
ally learns a one-dimensional discriminative scale filter, that
is used to estimate the target size. For the translation filter,
the intensity features employed in the MOSSE tracker is com-
bined with a pixel-dense representation of HOG-features [1].

DeepSTRCF implements a variant of STRCF tracker [19]
with deep CNN features. STRCF addresses the computational
inefficiency problem of SRDCF tracker from two aspects: (i)
a temporal regularization term to remove the need of formu-
lation on large training sets, and (ii) an ADMM algorithm to
solve the STRCF model efficiently. Therefore, it can provide
more robust models and much faster solutions than SRDCF
thanks to online Passive-Aggressive learning and ADMM
solver, respectively [14]. This tracker was implemented on
MatLab running on a GPU.

LADCF utilizes adaptive spatial regularizer to train low-
dimensional discriminative correlation filters [20]. A low-
dimensional discriminative manifold space is designed by ex-
ploiting temporal consistency, which carries out reliable and
flexible temporal information compression, alleviating filter
degeneration and preserving appearance diversity. Adaptive
spatial regularization and temporal consistency are combined
in an objective function, which is optimized by the augmented

Lagrangian method. Robustness is further considered by in-
tegrating HOG, Colour Names, and ResNet-50 features. For
ResNet-50 features, data augmentation [21] is adopted using
flip, rotation and blur. This tracker was implemented on Mat-
Lab running on a CPU [14].

VITAL [22] carries out tracking using adversarial learn-
ing. It uses a generative network to randomly generate masks
for augmenting positive samples. Masks are applied to adap-
tively dropout input features and capture a variety of appear-
ance changes. With the use of adversarial learning, VITAL
network identifies the mask that maintains the most robust
features of the target objects over a long temporal span. It
also, proposes a high-order cost sensitive loss, decreasing the
effect of easy negative samples and facilitating the training of
classification network. In this way, class imbalance issues, is
handled.

3. EVALUATION MEASURES

Trackers parameters were set to their respective default values
and kept constant during experimentation. Each tracker was
executed 30 times on each sequence, considering stochastic
processes. This number of executions is enough for statistical
evaluation of correlation across the measures. We used the
performance measures proposed by [23], for analyzing accu-
racy and robustness. These are described as follows.

3.1. Average Overlap

The average overlap measure is the most appropriate to be
used for tracker comparison. It offers several advantages:
simple computation, scale and threshold invariance, exploits
the entire sequence, and a clear and concise interpretation.
According to the correlation made, the least correlated mea-
sures are failure rate and average overlap on re-initialized tra-
jectories. The average overlap measure can be considered as
the best choice for measuring the accuracy of a tracker since
it takes into account the size of the object and does not require
a threshold parameter.

3.2. Failure Rate

The failure rate measure addresses the problem of the VOT
length measure. It casts the VOT problem as a supervised sys-
tem in which a human operator reinitialize the tracker once it
fails. The number of required manual interventions per frame
is recorded and used as a comparative score. We declare a fail-
ure when the bounding box overlap is 0 since we are only in-
terested in the most apparent failure without overlap between
regions. The robustness is defined as an exponential failure
distribution, Rs = eSM . The value of M denotes meantime-
between-failures, i.e., M = F0

N , where N is the length of the
sequence. The reliability of a tracker can be interpreted as a
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(a) Pristine Indoor (b) Distorted Indoor

(c) Pristine Outdoor (d) Distorted Outdoor

Fig. 1: Examples of pristine and distorted images within in-
door and outdoor environments.

probability that the tracker will still successfully track the ob-
ject up to S frames since the last failure, assuming a uniform
failure distribution that does not depend on previous failures.
In this study, we assumed S=30.

4. AUTHENTICALLY DISTORTED VIDEO DATASET

We created a distorted video surveillance dataset of 537
videos affected by in-capture distortions, acquired by four dif-
ferent surveillance cameras [24]. It is available at https://
tinyurl.com/DSVD-Dataset. The 15 videos and the
ground truth bounding boxes with those we perform the tests
are available on https://tinyurl.com/DSVD-Test.
The distortions are out-of-focus, exposure time, and exposure
concurrently with out-of-focus. The videos in this dataset
have an equal rate I/P frames: 10 fps. This frame rate is
typical in commercial applications of video surveillance.
The minimization of storage costs also motivates this frame
rate selection. The frame size is FHD (1920× 1080), the
color space is three RGB channels and the exposure variation
range is

{
1

480 ,
1

120

}
seconds. The video dataset also contains

H.264/AVC compression post-capture distortions at three dif-
ferent bitrates, resulting in three mirrored video sequences,
that change only in the level of compression. The three differ-
ent bitrates (4700, 1800 and 1200 kbps) were chosen in order
to generate degradation all over the distortion scale (from
imperceptible to very annoying).

5. RESULTS AND ANALYSIS

The trackers were tested in 15 scenes that contain in-capture
distortions such as lack of exposure, out-of-focus and out-of-
focus concurrently with lack of exposure in indoor and out-
door environments. Figure 1 presents examples of these test

Fig. 2: A-R plot for VOT in an indoor environment with pris-
tine and distorted videos with the same activity.

Fig. 3: A-R plot for VOT in and outdoor environment with
pristine and distorted videos with the same activity.

sequences, where the difference in image quality between the
pristine and distorted image can be identified. It can be no-
ticed that even for the human observer it is difficult to distin-
guish the people or objects that intervene in the scene in the
distorted images.

Figures 2 and 3 show the results of trackers in indoor and
outdoor environments. All the videos contain the same ac-
tivity and were recorded with the same cameras in the same
physical space. The only changing aspect is the distortion
type. It can be seen that in both environments (indoor and
outdoor) the best result is achieved with the pristine videos.
Nonetheless, the outdoor environment is more challenging for
trackers, possibly due to changes in illumination and scene
depth. In both environments, the distortion that most severely
affected the trackers was exposure time. Furthermore, in the
outdoor environment, the accuracy decreased severely and
consistently in all distortions and pristine videos. The tracker
who obtained the best results in the indoor environment was
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Fig. 4: A-R plot for VOT within an indoor environment in
pristine videos (same conditions for all) and different activity.

Fig. 5: A-R plot for VOT with exposure time distortion in the
same level and different activity in video.

DeepSTRCF. In the outdoor environment, the most accurate
tracker was MCCT, and the most robust tracker was Deep-
STRCF. We tested the trackers with pristine and distorted
videos that contain different activities, to evaluate VOT in re-
alistic scenarios.

In the first scenario, we tested similar activities, now
with pristine videos, as is shown in Figure 4. These re-
sults demonstrated that in pristine videos, the visual content
does not affect the tracker robustness severely, whereas in
videos with distortions, the tracker performance (accuracy
and robustness) changes in a significant way and have a high
dependence on visual content. In the second scenario, we
tested four activities (prowling, leaving package person, a
person running, a person passing out) on videos from the
same camera, with exposure distortion, as is shown in Fig-
ure 5. In general, the most challenging video for the trackers
was a running person, possibly due to fast changes in ob-
ject position and the low FPS used (10 FPS). By taking into

account the overall performance in all 15 scenes containing
all distortions, environments, and activity, the most accurate
tracker was DeepSTRCF, and the most robust was VITAL.
However, these performances are far from the performance
with pristine videos. It highlights the necessity of future VOT
methods performance improvement on authentic distortions.

6. CONCLUSIONS

We carried out an analysis of seven state-of-the-art trackers
highly ranked in the 2017 and the 2018 VOT challenges [1,
14]. The most innovative aspect of the presented analysis
is based on the database used. This paper introduces the
Distorted Video Surveillance Database -DVSD. It involves
videos affected by in-capture distortions produced by expo-
sure time and out-of-focus variations in challenging indoors
and outdoors scenarios. DVSD contains real-world surveil-
lance scenes such as people walking alone, meeting, fighting,
passing out, leaving a package in a public place, prowling,
and being robbed. In this way, DVSD can be seen as a solid
starting point to study the influence of distortions on video
tracker performance.

This study concludes that in-capture distortions severely
affect the performance of state-of-the-art trackers. As ex-
pected, the trackers had the best performance in the pristine
videos. Beyond that, the results reflect a poor performance
of the trackers due to distortions such as underexposure and
out-of-focus. In practice, no specific type of distortion consis-
tently generated the worst performance in all scenes, neither
affected all trackers in the same way.

Hence, the design and construction of a robust tracker for
these distortions remains as an open question. We believe it
can can be answered by creating algorithms relying on per-
ceptual features to compensate the impairments produced by
these distortions.
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