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ABSTRACT

In this paper, we propose a novel framework for hand local-
ization and pose estimation from a single depth image. For
hand localization, unlike most existing methods that using
heuristic strategies, e.g. color segmentation, we propose Hi-
erarchical Hand location Networks (HHLN) to estimate the
hand location from coarse to fine in depth images, which is
robust to the complex environment and efficient. It first ap-
plied at a low-resolution octree of the whole depth image and
produced coarse hand region and then constructs the hand re-
gion into a high-resolution octree for fine location estimation.
For pose estimation, we propose Wide Receptive-filed (WR-
OCNN) which is able to capture meaningful hand structure
in different scales and estimate the 3D hand pose accurately.
Experiments on two widely-used hand datasets(NYU dataset
and ICVL dataset) demonstrate the effectiveness and superi-
ority of the proposed framework.

Index Terms— Hand Location, Hand Pose Estimation,
Octree-based CNN,

1. INTRODUCTION

In recent years, hand localization and pose estimation are
becoming increasingly important in the fields of human-
computer interaction and computer vision [1]. With the ad-
vent of RGB-D cameras such as Kinect and Intel RealSense,
many depth-based methods [2, 3] have been proposed to
accomplish such challenging tasks.

Hand localization aims to estimate the center of hand from
depth images with complicated environments., it plays a key
role in the further analysis. For example, pose estimation
largely benefits from an accurate hand location et.al [4]. Pre-
vious works rely either on skin color based detector or exist-
ing human skeleton trackers. Thompson et.al [5] use a ran-
dom forest to classify each pixel into hand or background.
Tagliasacchi et.al [6] localize and segment the hand based on
a wirstband. However, the above methods are based on simple
assumptions, e.g. the hand appears largest in front of the sen-
sor or the wristband can be identified by color segmentation.
These assumptions would be further from real scenarios with
cluttered backgrounds. Recently, Some deep based methods
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have been presented for hand localization. Choi et.al [7] pro-
posed a localization network for hand localization. However,
it considers the whole scene of high-resolution input, thus
suffers from the processing speed. Chen et.al [8] proposed
a framework which integrates hand detection and pose esti-
mation. But it uses the 2D object detection method, which is
limited from depth data.

In this paper, we propose a Hierarchical Hand Localiza-
tion Networks (HHLN) to estimate the hand location from
coarse to fine in a single depth image. Concretely, we build
a hierarchical structure that first applied at a low-resolution
octree of the whole image to produce a coarse hand region
and then constructs a high-resolution octree based on the re-
gion for fine location estimation based on DeconvNets. By
using the hierarchical structure that processes the low reso-
lution, the HHLN is robust to real scenarios and efficient for
analyzing 3D hand shape.

Given the hand image region, pose estimation targets to
evaluate the joints’ locations of hand. There are two cate-
gories: generative methods and discriminative methods.
The generative ones use the 3D hand model to approxi-
mate the point cloud, by optimizing a pre-defined energy
function to estimate the hand pose. Oikonomidis et.al [9]
fit a spheres/cylinders hand model to the depth image with
particle swarm optimization(PSO). Qian et.al [10] used an
ICP-PSO method to find the closest hand model parameters
that match the observed data. Generative methods are more
computation complexity than discriminative methods and
easily prone to local minima due to the fast hand motion and
complex structure. The discriminative ones tend to learn a re-
gression function from training data, mapping the appearance
in depth images to hand pose. Ge et.al [11] represented hand
with a set of images rendered from three views and fed into
a 2D CNN for pose estimation. Zhou et.al [12] embed joint
rotation constraint into CNN to boost the accuracy.

Recently, many 3D CNN methods have been presented
for 3D shape analysis. O-CNN [13] is one of the successful
methods based on octree and efficient computation on high-
resolution volumes. In this paper, we employ the O-CNN
to estimate the hand pose. However, it fails to model com-
plex structures of multiple scales which shows better perfor-
mance as stated in [14]. To alleviate the problem and in-
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Fig. 1. Overview of the our framework. Given a depth image, we first convert it to an octree structure of low resolution and
fed into the Hierarchical Hand Location Network to produce the hand region from coarse to fine. Then, we use a multi-views
extremes points based method to extract the hand region. Finally, the Wide Receptive-field Octree-based CNN takes the octree

hand region as input and output the 3D hand pose.

spired by the capacity of Inception structure [14], we extend
O-CNN by broadening the receptive field to capture multi-
scales hand structures. More specifically, we add additional
convolution streams with different kernels in each convolu-
tion layer, thus build the Wide Receptive-field Octree-based
CNN (WR-OCNN).

As shown in Fig.1, we combine HHLN and WR-OCNN to
construct a joint framework. We use a low-resolution octree
to represents the depth image and fed into the HHLN to esti-
mate the position of hand center, which represents by a likeli-
hood map. To robustly extract hand region, a multi-views ex-
treme points based method is proposed to extract hand region.
Subsequently, the WR-OCNN takes hand octree as input and
regresses the hand joint locations. Note that with the help
of the HHLN, our framework could process the whole depth
image, thus improves the speed. We conduct a set of experi-
ments on two public datasets to evaluate our framework and
the results demonstrate its effectiveness.

2. HAND LOCALIZATION AND POSE ESTIMATION

Our framework consists of hand localization and pose esti-
mation. In this section, we will describe the components of
this framework, i.e. the Hierarchy Hand Location Network
(HHLN) to locate the hand region and the Wide Receptive-
filed OCNN (WR-OCNN) to estimate the hand pose.

2.1. Hand Localization

Our HHLN is able to locate the hand from coarse to fine in
a cluttered background. In particular, the HHLN processes
the depth image in a hierarchical way, which consists of two
stages. In the first stage, we constructed a low-resolution

octree from the whole depth image and fed into the Decon-
vNets ! to produce the coarse hand region. In the second
stage, based on the coarse hand region, we constructed a high-
resolution octree and fed into another DeconvNets to esti-
mate the fine hand region. Different from the DeconvNets
that is used for part shape segmentation in [13], we aim to
estimate the per-voxel likelihood heatmap for hand center.
In each stage, the hand region is cropped from depth im-
age according to the heatmap where the value is larger than
a pre-defined threshold. Like [15], the per-voxel likelihood
heatmap is computed as follows:

(i —ic)® + (J = je)* + (k — ke)?
202
where (4,7, k) is the center coordinate of each voxel and
(ic, Je, ke) 1s the center coordinate of hand.

As shown in Fig.1 (top row). The HHLN consists of a
pair of DeconvNets that applied at low-resolution octee of the
whole depth image and high-resolution octree of coarse hand
region. Both of them have the same structure, which cascades
a deconvolution network after a convolution network. The
convolution network has four octree convolution layers with
the kernel sizes are 3,3,3 and 1. The deconvolution network is
the mirror of convolution network where the convolution and
pooling operators are replaced by deconvolution and unpool-
ing operators. After the last octree deconvolution layer, we
adopt the mean square error as a loss function L as follows:

H:(ija k) = 6$p(—

) (D

N
L= >TI|H:(,5.k) — He(i,j, k)] @)

n=11j,k

where H} and H. are the ground-truth and estimated
heatmaps for hand center.

IThe DeconvNets mentioned in this paper refers to the version in [13],
aiming to 3D part shape segmentation.
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Fig. 2. The illusion of hand region extraction. The red circles
are extreme points and the green ones are the outliers
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In addition, most deep learning based approaches extract
a fixed-size metric cube from images around the hand. How-
ever, directly resizing the input image will change the origi-
nal topology. Inspire by XY-fingers [10], we also propose a
multi-views extreme points based method to find an optimal
hand region in 3D space.

We build a bounding box which centered at max likeli-
hood position and contains nearby points. Then we project
these points to xy, £z, yz plane to produce three images based
on projective directional Truncated Signed Distance Func-
tion(TSDF) [16]. For each image, we start from the center
position and compute its 3D geodesic distance map to all pix-
els using distance transform. Then add the maximal voxel in
the geodesic distance map as a new extreme point and update
the distance map in an incremental manner. After repeated
the process for N times and removed the outliers (usually the
“flying pixels”), we finally obtain K extreme points. Fig.2
shows the extreme points of the hand. The hand region is
then represented by points within the 3D contour composed
by extreme points.

2.2. Hand Pose estimation

After extracted the hand region using HHLN, we build WR-
OCNN (shown in the bottom row of Fig.1) that takes octree of
hand region as input to estimate the joints’ locations of hand.

Since the Inception block [14] has been widely used for
its competence of learning various scale features. We then de-
sign a wide receptive-field block (shown in Fig.1) and apply it
into O-CNN, enabling WR-OCNN to capture more complex
structure of hand. The receptive-field block is a combination
of three convolution streams with specific kernels, i.e. 1 x 1,
3 x 3and 2 x 2. All those layers with their output filter banks
are concatenated into a single output vector. The WR-OCNN
starts with three wide receptive-field blocks, each block fol-
lows a max pooling layer. After that, the extracted feature
maps are fed into three fully-connected layers to regress 3D
hand joint locations. We use the Minimum Square Error loss
to train the WR-OCNN.

We also employ a data augmentation method to increase
generalization of the network. Specifically, we apply random
rotation along z axis with the range of [—15°, 15°] and scal-
ing displacement [0.8, 1.2] to the constructed octree.

3. EXPERIMENTS

In this section, we first depict our implementation details and
then show the comparison of ours and other state-of-the-art
ones.

3.1. Implementation details

We train and evaluate our networks on a PC with Intel Core
i7 6700K, 32GB of RAM and a Nvidia 1080-Ti GPU. Mod-
els are implemented within the caffe framework [17]. When
training the HHLN, we use Adam optimizer with learning rate
0.005, batch size 8, weight decay 0.0005. For WR-OCNN, we
set the learning rate to 0.01, batch size 32, the other parame-
ters are the same as HHLN.

We evaluate the hand location performance using 3D dis-
tance error between the hand center and ground truth. Follow-
ing [7], we use middle finger’ root as hand center. To evaluate
the hand pose estimation, we employ two popular metrics, i.e.
per-joint mean error distance overall test frames and the pro-
portion of test frames whose maximum error falls below a
threshold.

Baselines: To validate the effective of the counterparts of
the proposed framework, we create several baselines:

1)B1: We use a single DeconvNets instead of the hierar-
chical structure that takes the whole scene of high resolution
as input to estimate the hand region.

2)B2: We replace the HHLN in our framework and follow
the hand localization in [13] to estimate the hand pose.

3)B3: We use the same convolution structure in [13]
rather than Wide Receptive-field block in our framework to
estimate the hand pose.

3.2. Results on NYU dataset

NYU dataset [5] contains 72,757 training frames and 8,252
testing frames, which are original depth images with com-
plicated environment. On NYU dataset, we follow [11] and
use a subset of 14 hand joints. We compare our method
to three state-of-the-art methods, including DeepPrior[18],
Feedback[3] and DeepModel[12]. As can be seen in Fig.3,
our method outperforms those methods in terms of the er-
ror thresholds. The mean error distance for all joints of our
method is 15.62mm, which is 2mm smaller than the results of
DeepModel and Smm smaller than the results of DeepPrior.
Compared with B2, our framework shows better performance,
indicating the effectiveness of the combination of hand local-
ization and pose estimation. The performance gain is more
obvious w.r.t. B3, showing the capacity of out WR-OCNN
for capturing more complex hand structure.

In Table 1, we compare our HHLN with Choi et.al [7] and
B1 in terms of the mean distance error overall test frames.
The performance gain is more obvious w.r.t. B1 and [7], indi-
cating the key role of our hierarchical localization structure.
Meanwhile, HHLN shows faster process speed.
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Table 1. Comparison of different methods for hand localiza-

tion.
Method  run time(ms) mean error(pixels)
Bl 52 8.06
Choi [7] 48 13.62
HHLN 29 6.29

3.3. Results on ICVL dataset

ICVL dataset [19] contains 33K training frames and 1.6K
testing frames, each of which contains 16 joints. In the ICVL
dataset, hand region is centered in the frame, we thus do
not need to perform the hand localization and only report
the result of hand pose estimation. On ICVL dataset, we
compare our method to two state-of-the-art methods, i.e.
DeepModel[12], LRF [19]. As shown in Fig.4, when the
error threshold is 10mm, the proportions of good frames
of our method is higher than other methods. In terms of the
mean error distances, our method outperforms state-of-the-art

4. Comparison of our method and others on ICVL dataset.

methods on most of the hand joints and achieves the smallest
overall mean error distances.
4. CONCLUSIONS

In this paper, we propose a novel framework for hand local-
ization and pose estimation. For the former, we proposed
a hierarchy hand location network to estimate the hand re-
gion from coarse to fine. Thanks to the hierarchical struc-
ture, our HHLN is robust to the complex environment and
efficient. For the latter, we build Wide Receptive-filed(WR-
OCNN) which is able to capture meaningful hand structure in
different scales. Experimental results on two public hand pose
datasets show the effectiveness of the proposed framework.
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