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ABSTRACT

In this paper, we propose a simple yet efficient method termed
as Progressive Filtering for Feature Matching, which is able
to establish accurate correspondences between two images of
common or similar scenes. Our algorithm first grids the cor-
respondence space and calculates a typical motion vector for
each cell, and then removes false matches by checking the
consistency between each putative match and the typical mo-
tion vector in the corresponding cell, which is achieved by
a convolution operation. By refining the typical motion vec-
tor in an iterative manner, we further introduce a progressive
matching strategy based on the coarse-to-fine theory to pro-
mote the matching accuracy gradually. The density estima-
tion is utilized to address the island samples and accelerate
the convergency of the mismatch removal procedure. In ad-
dition, our method is quite efficient where the gridding strat-
egy enables it to achieve linear time complexity. Extensive
experiments on several representative real images involving
different types of geometric transformations demonstrate the
superiority of our approach over the state-of-the-art.

Index Terms— Feature matching, filtering, density esti-
mation, progressive, outlier

1. INTRODUCTION

Establishing reliable correspondences between two image
feature sets is a fundamental problem in computer vision,
and it has been widely used in a wide range of applications
including 3D reconstruction, SLAM, image registration and
fusion [1, 2, 3, 4, 5]. These tasks typically desire a robust and
efficient matching strategy to seek as many correct correspon-
dences as possible while keeping mismatches to a minimum.
However, due to the combinatorial nature, matching N points
to another N points would create a total of O(N !) com-
putational complexity. To simplify the matching procedure,
existing methods commonly construct a set of putative match-
es firstly based on the similarity of local image descriptors
associated with the feature points, and then filter out false
matches from the constructed putative set using additional
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geometrical constraints [6, 7, 8, 9]. In this paper, we focus on
mismatch removal from a given putative correspondence set.

During the past decades, a number of methods have
been investigated to address the mismatch removal problem.
The most representative perhaps is random sample consen-
sus (RANSAC) [10] and its variants [11, 12]. Following a
hypothesize-and-verify strategy, these methods aim to find
a smallest consistent inlier set to fit a given geometric mod-
el and estimate a pre-defined transformation by resampling
randomly. However, these methods would degrade sharply
and even fail when the geometric transformation between two
images is not parametric, e.g. non-rigid. To deal with this
limitation, several non-parametric model based techniques
have been developed, such as identifying correspondence
function (ICF) [13] and manifold regularization-based robust
point matching (MR-RPM) [14]. These methods typically
interpolate a mapping function between two images based on
a slow-and-smooth prior. They have shown promising per-
formance on addressing the deformable matching problem,
but the smoothness prior will be violated if the image scene
contains large discontinuous motion, e.g. wide baseline im-
age pairs. Graph matching is another alternative for feature
matching, which usually constructs an affinity matrix and
formulates the matching problem as a quadratic assignment
problem to seek the maximum inlier set [15]. Representa-
tives include mode seeking [16, 17], graph shift (GS) [18],
graduated consistency regularization [19], etc. Neverthe-
less, graph matching methods suffer from high computational
cost, which is not applicable to large-scale matching prob-
lem. Recently, some new approaches based on neighborhood
consistency preservation are also studied, such as grid-based
motion statistics (GMS) [3], locality preserving matching
(LPM) [20, 21], and deep learning method [22]. These meth-
ods are quite efficient for fast matching, but cannot work well
when the putative set involves a large number of outliers.

In this paper, we propose a simple yet efficient method,
named progressive filtering for feature matching (PFFM), for
robust feature matching using a grid-based strategy and filter-
ing in signal denoising. In particular, we first grid the cor-
respondence space and calculates a typical motion vector for
each cell, then the mismatches are identified by checking the
consistency between each putative match and the correspond-
ing typical motion vector under a convolution operation in lin-
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ear time complexity. To improve the matching accuracy, we
introduce a progressive matching strategy to iteratively refine
the typical motion vectors. In addition, the density estimation
is adopted to address the island samples and accelerate the
convergency of the mismatch removal procedure. The quali-
tative and quantitative results demonstrate that our PFFM can
achieve consistently better matching accuracy compared to
the state-of-the-art competitors.

Our major contributions include: i) The proposed method
does not require a pre-defined transformation model as many
existing methods do, which is more generally and can deal
with the matching problem undergoing a wide range of ge-
ometrical transformations. ii) From a novel perspective, we
convert the putative matches into a motion matrix and han-
dle the outliers with a convolution operation, which provide
a guide to address the feature matching problem using deep
learning techniques in future. iii) The gridding strategy en-
ables our method to achieve linear time complexity, and our
method can fulfil the matching problem in dozens of mil-
liseconds even the putative set contains thousands of matches.
This is beneficial for addressing real-time tasks.

2. METHOD

To establish feature matches, we firstly construct a set of pu-
tative matches by comparing the similarity of SIFT feature
descriptors [23], and then the matching task boils down to
rejecting the false matches from the given putative set.

2.1. Problem Formulation

Given two images I and I ′ of the same or similar scene,
suppose we have obtained a set of N putative matches S =
{(xi,yi)}Ni=1 extracted from them, where xi = (u, v)T and
yi = (u′, v′)T are the pixel coordinates (i.e., extracted feature
points) of I and I ′, respectively. Let mi = yi − xi denote
the motion vector of match (xi,yi), then we can transform
the putative set into S ′ = {(xi,mi)}Ni=1 and our goal is to
find reliable matches from the putative set by utilizing the ge-
ometrical consistency among true matches1 [20, 3, 24].

Referring to image filtering for denoising, when given a
noisy image, it is to considering the pixels in a local area
(determined by the convolution kernel size) comprehensively,
such as mean or median operation, to restore the pixel inten-
sity and filter the gaussian or salt noise. From this point, it is
feasible to calculate the average motion vector on the poten-
tial true matches in a small region, and reject the false matches
by checking the deviation between each putative motion vec-
tor and the average motion vector based on the consistency.

To this end, we divide each dimension of feature points
X = {xi}Ni=1 into nc non-overlapping parts equally, and ob-

1The geometrical consistency denotes that the correct matches should
have similar motion behavior, as least in local neighborhoods, while the false
matches are usually randomly distributed.
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Fig. 1. The proposed progressive filtering framework for ro-
bust feature matching. Blue: inlier; red: outlier.

tain G = nc × nc cells. Accordingly, the putative set S ′ can
be divided into G parts with X = {Cj,k}nc

j,k=1 as the grid-
ding putative motion vectors, as shown in Fig. 1. We denote
M as the average motion matrix, where Mj,k = mj,k is the
average motion vector in the (j, k)-th cell determined by

mj,k =

{ 1
|Cj,k|

∑
i|xi∈Cj,k mi, if |Cj,k| > 0,

0, if |Cj,k| = 0.
(1)

We calculate the deviation as E = {ei = mi −mj,k|∀i,xi ∈
Cj,k}Ni=1. Without loss of generality, we can an assumption
that ei ∼ N (0, σ2I), where I is a D × D unit matrix with
D = 2 being the dimension of feature points. Therefore, it is
desirable to utilize the mean filtering for mismatch removal.

Nevertheless, there are still two limitations in the afore-
mentioned strategy. On the one hand, if the putative match
is island in one cell, i.e., xi ∈ Cj,k and |Cj,k| = 1 then
mj,k = mi, resulting in the deviation is zero for both true
and false matches. On the other hand, the average operation
in a single cell ignores the connection between neighboring
cells. When the putative set contains a large number of out-
liers (which often occurs in the feature matching problem),
the consistency based on single cell will be badly degraded.
To address these two problems, in the following we propose
two strategies including the density estimation of each sample
and the convolution of motion vectors.

2.2. Density Estimation

As aforementioned, there would exist some island match-
es that affect a lot. To address this issue, we firstly regard
(xi,mi) as a sample from the putative set S ′ with dimen-
sion D0 (e.g. D0 = 4). Then we divide these samples into
nD0
0 non-overlapping cells with a small value of n0 (e.g.,
n0 = 5) and select inliers roughly by the density of each high
dimension cell, which is defined as

S(n) = C(n)−fD0N√
fD0 (1−fD0 )N

, (2)

where C(n) is the sample numbers located in the n-th high
dimension cell with n = 1, . . . , nD0

0 , f = 1
n0

is the prob-
ability of each sample to locate in a divided part along one
dimension of the sample, fD0N is the expectation of putative
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match number in each cell,
√
fD0(1− fD0)N is its standard

deviation. S(n) measures the density degree of cell n, and we
set a threshold τ to reject outliers. Here τ with a default value
2 controls the deviation level from expectation of objects.

2.3. Convolution Operation

In order to utilize the interaction among neighboring cells, we
consider the local nk × nk cells comprehensively according
to the convolution theory. The convolution f(⊗) of putative
motion vectors is defined as

f(⊗) : M̃ = (W·M)⊗κ
W⊗κ+ε , (3)

where M̃ is the generated nc × nc ×D matrix after convolu-
tion, with M̃j,k = m̃j,k denoting the typical motion vector of
cell (j, k), W is a count matrix with Wj,k = |Cj,k|, and κ is
a Gaussian kernel distance matrix of size nk × nk (nk = 3 in
this paper), where we design it as

κ = exp{−D}∑nk
i=1

∑nk
j=1 exp{−Di,j}

, D =

 √2 1
√
2

1 0 1√
2 1

√
2

. (4)

The numerator in Eq. (3) is used for weight compensating
to preserve the scale of convolution results, where ε is a in-
finitesimal positive number in case there exists 0 of W ⊗ κ.

After the convolution, we obtain the typical motion vector
of each cell, as shown by the green color vector located in the
centre of each cell in Fig. 1. Then we define the deviation
between mi and the corresponding m̃j,k as

di = 1− exp
{
− ‖mi−m̃j,k‖2

β2

}
, ∀i,xi ∈ Cj,k, (5)

where β is used for determining the width of the range of
interaction between two motion vectors, and we empirically
set β2 = 0.08. Thus the inlier set I∗ can be detected by
comparing the deviation and a given threshold λ:

I∗ = {i | di ≤ λ}. (6)

2.4. Progressive Filtering

From Fig. 1, we see that the inliers and outliers are not so
separable by a certain threshold (as shown in Iteration 1), and
we can only filter a part of false matches by λ1. In fact, if the
typical motion vectors are constructed only by inliers, then
the deviation of inliers and outliers will almost tend to 0 and
1, respectively. Nevertheless, the ground truth inliers are not
available in advance. To solve this dilemma, we propose an
iteration strategy to remove outliers progressively. It iterative-
ly refines the typical motion vector and anneals the threshold
λ based on the coarse-to-fine theory. The inlier set is approx-
imated with the results of each iteration until convergence.

As shown in the first line of Fig. 1, the deviation margin
between inliers and outliers has been distinctly enlarged as
the iteration proceeds. We name our method as progressive
filtering for feature matching and summarize it in Alg. 1.

Algorithm 1: The PFFM Algorithm
Input: Putative set S = {(xi,yi)}Ni=1, parameters nc, γ, τ
Output: Inlier set I∗

1 Initialize the inlier set I and parameter λ;
2 Convert S into S ′ and gridding;
3 Filter out distinct outliers by density estimation by Eq. (2);
4 Iteration:
5 Calculate matrix M and W;
6 Construct matrix M̃ using Eq. (3);
7 Calculate the deviations using Eq. (5);
8 Determine I∗ using Eq. (6);
9 Annealing: λ← γλ;

10 Until convergence;
11 Return I∗.

2.5. Computational Complexity

To obtain the gridding putative set, we need to calculate the
quotients of X over the divided interval, thus, the time cost of
initialization, putative set converting and gridding in Lines 1
and 2 of Alg. 1 is O(N). In Lies 3, the density is estimated
in each high dimension cell with the time complexity O(N).
The average motion vectors and count matrix are calculated in
each cell and each match is only used once, which costsO(N)
time complexity. As for the convolution operation, it depends
on the cell number and the kernel size, which has time com-
plexity close to O(n2k × n2c). Moreover, calculating the de-
viations and determining the inlier set using Eqs. (5) and (6)
in Lines 7 and 8 cost O(N) complexity. Our PFFM can con-
verge in very few iterations (typically 3 times), therefore, the
total time complexity of our PFFM is about O(n2k×n2c+N).
The space complexity of our algorithm is O(N) due to the
memory requirement for only storing the putative set and the
deviation. Generally, nk and nc are constants and both much
smaller than N , thus both the time and space complexities of
our method can be simply written as O(N). That is to say,
our PFFM has linear complexity, which is significant for ad-
dressing large-scale or real-time problems.

2.6. Implementation Details

There may exist multiple putative matches sharing a common
feature point, i.e., xi = xj , i 6= j, which would influence the
performance. We initialize these putative matches as outliers.
To eliminate the influence of the coordinate scale of feature
points, we normalize them ranging from 0 to 1. We empiri-
cally set the default value of gridding size nc and the iteration
time as 10 and 5, which works sufficient well for addressing
the feature matching problem. Our PFFM uses an iterative
strategy to filter the outliers progressively, which is similar
to deterministic annealing. Thus, we set the threshold λ to a
large value in the first, then decrease it gradually with respect
to iteration, the annealing rate is controlled by parameter γ.
We initialize λ = 0.8 and set γ = 0.25 throughout this paper.
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Fig. 2. Feature matching results of our PFFM on 10 typical image pairs involving different types of transformations (blue =
true positive, black = true negative, green = false negative, red = false positive). For visibility, in the image pairs, at most 100
randomly selected matches are shown, and we do not show the true negatives.

Table 1. Precision (P), Recall (R), F-score (F) and Run time (T) of RANSAC [10], ICF [13], GS [18], GMS [3], MR-RPM
[14], LPM [20], and PFFM on the 10 image pairs shown in Fig. 2. The Average values are shown at the bottom. Red: the best.

Data RANSAC ICF GS GMS MR-RPM LPM PFFM (Ours)

P (%) R(%) F T (ms) P (%) R(%) F T (ms) P (%) R(%) F T (ms) P (%) R(%) F T (ms) P (%) R(%) F T (ms) P (%) R(%) F T (ms) P (%) R(%) F T (ms)

RS01 100.0 100.0 1.00 1.12e4 12.74 100.0 0.23 4.83e3 100.0 72.37 0.84 3.50e3 96.43 94.74 0.96 2.04e0 10.59 100.0 0.19 5.15e2 81.04 95.61 0.88 2.62e1 100.0 100.0 1.00 7.77e1
RS02 96.72 100.0 0.98 1.96e2 100.0 82.79 0.91 1.66e1 99.54 75.29 0.86 9.67e1 83.33 71.43 0.77 1.13e0 44.36 100.0 0.61 4.72e2 96.65 87.82 0.92 1.73e0 99.29 98.95 0.99 1.25e2
Retina 100.0 100.0 1.00 3.65e2 73.13 100.0 0.84 2.67e3 94.23 100.0 0.97 6.88e3 96.34 86.42 0.91 1.70e0 100.0 91.84 0.96 1.15e1 94.23 100.0 0.97 1.22e1 100.0 100.0 1.00 6.16e1
Church 95.16 83.10 0.89 1.49e2 93.75 63.38 0.76 1.93e1 95.83 97.18 0.97 1.00e2 86.76 83.10 0.85 0.86e0 100.0 80.28 0.89 1.28e1 82.50 92.96 0.87 1.21e0 98.59 98.59 0.99 4.40e1
Tshirt 96.39 80.81 0.88 1.00e3 78.26 90.91 0.84 4.61e1 93.06 67.68 0.78 2.60e2 79.21 80.81 0.80 1.02e0 97.98 97.98 0.98 1.89e1 87.76 86.87 0.87 5.47e0 98.02 100.0 0.99 6.35e1

Dogcat 100.0 97.85 0.99 1.02e1 92.19 63.44 0.75 1.66e1 97.70 91.40 0.94 5.65e2 93.18 88.17 0.91 0.88e0 100.0 100.0 1.00 6.53e0 97.89 100.0 0.99 0.81e0 98.94 100.0 0.99 4.83e1
Fox 98.10 91.15 0.94 4.58e1 98.57 61.06 0.75 1.83e1 100.0 90.27 0.95 1.31e3 96.49 97.35 0.97 0.84e0 97.12 89.38 0.93 8.27e0 94.87 98.23 0.97 0.83e0 100.0 100.0 1.00 6.16e1

Graft 99.74 100.0 1.00 1.45e1 100.0 14.02 0.25 1.86e2 99.66 77.51 0.87 2.42e3 98.07 93.92 0.96 1.23e0 100.0 96.30 0.98 2.11e1 98.14 97.88 0.98 2.76e0 99.21 99.47 0.99 8.67e1
Herzjesu 99.09 86.51 0.92 1.19e2 98.55 53.97 0.70 3.07e1 99.07 84.13 0.91 2.32e2 87.07 80.16 0.83 1.87e0 98.29 91.27 0.95 1.49e1 96.88 98.41 0.98 1.13e0 99.21 100.0 1.00 6.33e1
House 98.66 82.20 0.90 8.31e1 100.0 60.67 0.76 1.91e3 100.0 58.71 0.74 2.70e4 95.81 93.76 0.95 1.61e0 97.63 96.18 0.97 2.23e2 94.48 98.97 0.97 8.96e0 97.27 99.44 0.98 1.49e2

Average 98.38 92.16 0.95 1.32e3 84.72 69.02 0.68 9.74e2 97.91 81.45 0.88 4.24e3 91.27 86.98 0.89 1.32e0 84.60 94.32 0.85 1.30e2 92.44 95.68 0.94 6.10e0 99.05 99.65 0.99 7.80e1

3. EXPERIMENTAL RESULTS

We evaluate the performance of PFFM on 10 typical image
pairs, which undergo different types of geometric transfor-
mations including affine, non-rigid, epipolar geometry, etc.
The numbers of putative matches in the 10 test pairs are 2152,
1982, 101, 126, 226, 113, 135, 442, 184 and 1367, respective-
ly, and the inlier ratios are about 68.48%, 43.09%, 48.51%,
56.35%, 43.81%, 82.30%, 83.70%, 85.52%, 68.48% and
78.49%, respectively, with the ground truth established by
manually checking of each putative match. We use 6 state-
of-the-art methods for comparison, including RANSAC [10],
ICF [13], GS [18], GMS [3], MR-RPM [14], and LPM [20].
All the experiments are conducted on a desktop with 4.0 GHZ
Intel Core i7-6700K CPU, 8GB memory, and Matlab code.

We qualitatively show the matching results of PFFM in
Fig. 2. From the results, we see that just a few matches are
misjudged even when the outliers are dominated or image
pairs suffer from great rotation, scale change, or non-rigid de-
formation. Further, we provide a quantitative comparison of
different methods on the test data. The matching performance
is characterized by precision (P), recall (R), F-score (F)2, and
run time. The detailed results are reported in Table 1. From

2P is defined as the ration of the identified inlier number and the pre-
served match number, R is defined as the ratio of identified inlier number and
the whole inlier number, and F is defined as the ratio of 2PR and P +R.

the results, we can see that our method can almost consis-
tently achieve the best matching accuracy, such as the preci-
sion, recall and F-score. Besides, although the runtime of our
PFFM is not the best, it can also achieve comparable results,
which requires merely dozens of milliseconds for mismatch
removal from thousands of putative matches. This demon-
strates the generality and effectiveness of our PFFM to deal
with feature matching problem over the state-of-the-art.

4. CONCLUSIONS

In this study, we propose a new feature matching method
based on progressive filtering. We first divide the putative
set into non-overlapping cells and calculate the average mo-
tion vector of each cell, and then we estimate the density and
preserve some reliable cells. Finally, we construct the typical
motion vectors using convolution operation like mean filter-
ing and detect outliers by checking the deviations between
the putative motion vector and its corresponding typical mo-
tion vector, and an iterative strategy is proposed to filter out
the outliers progressively. Our method can converge in a few
iterations, and the gridding strategy enables it to achieve lin-
ear time complexity. The qualitative and quantitative results
demonstrate that our method is efficient for addressing vari-
ous types of matching problems with high accuracy.
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