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ABSTRACT

Variational models for optical flow estimation usually define
an energy function that contains prior assumptions to explore
rudimentary statistics of images. However, such methods
cannot learn motion knowledge from the pre-prepared data
and have many parameters that need to be set manually.
Nowadays, convolutional neural networks (CNNs) have been
used in optical flow estimation successfully, which can learn
weights from the training dataset and can predict optical flow
end-to-end. In this paper, we propose an attention guided
network for learning optical flow, named AD-Net, which
contains several attention units for modelling the relativities
between the channels. Further, we introduce dilated convolu-
tion into supervised network for reducing the loss of motion
details. In addition, some prior auxiliary constraints are em-
bedded in the supervised network as auxiliary loss terms. Our
proposed approach is tested on MPI-Sintel and KITTI2012
datasets and can preserve motion edges and details effec-
tively.

Index Terms— Optical flow estimation, deep learning,
attention mechanism, dilated convolution

1. INTRODUCTION

Inferring optical flow is one of the key challenges in fields
such as autonomous driving and action recognition. The es-
timation of optical flow has been developed for many years.
Traditional approaches [1, 2, 3] always define an energy func-
tion based on prior knowledge, which capture rudimentary
statistics of images. We regard these methods as knowledge-
driven methods. However, knowledge-driven approaches usu-
ally need pre-define the prior constraints and are too slow to
be used in real-world application.
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Nowadays, CNNs are widely used for optical flow estima-
tion [4, 5, 6, 7, 8], which can automatically learn knowledge
from training data. From that, we regard these learning ap-
proaches as data-driven methods. The first research of learn-
ing optical flow is proposed by Dosovitskiy ef al. [4], which
introduces two end-to-end trained networks FlowNetS and
FlowNetC based on encoder-decoder architecture. However,
[4] still cannot compare to most of knowledge-driven meth-
ods [9, 10, 11]. To further improve accuracy, FlowNet2.0 [5]
cascades several sub-networks (FlowNet) to form a larger net-
work and trains these small networks one-by-one. Although
FlowNet2.0 achieves good performance, the amount of pa-
rameters is large due to stacking several separate networks.
Moreover, the training process of FlowNet2.0 is complicated
and the training process is time consuming. The FlowNet1.0
and FlowNet2.0 are both based on encoder-decoder networks,
which are easy to loss the details of motion due to strided
convolution and cannot lay emphasis on the important mo-
tion details. In addition, [4] and [5] are trained on synthetic
data with supervised manner by using endpoint loss, which
only rely on data and ignore the advantages of many prior
constraints used in knowledge-driven methods. [6, 7, 8] are
unsupervised methods which do not need to train on labelled
data. Although unsupervised methods do not require large
amounts of labelled data for training, the accuracy of these
methods is slightly lower than the supervised methods.

Recently, attention mechanism is widely used in many
computer vision areas such as image classification [12], ob-
ject detection [13] and image super-resolution [14]. The
mainly purpose of attention mechanism is to capture impor-
tant feature information for guiding feature learning, which
can be viewed as a unit to bias the allocation of available
processing resources towards the most informative parts of
an input image [12, 13, 14]. Inspired by the methods men-
tioned above, we introduce attention mechanism into optical
flow learning network for paying much attention to the im-
portant motion details. Dilated convolution is first proposed
in semantic segmentation task [15] for improving the per-
ceptive field of convolutional kernel. In optical flow field,
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Fig. 1. An overview of our proposed network based on attention unit and dilated convolution (contracting part). Starting with
conv3, we introduce attention units for refining feature maps. The last six layers are implemented by dilated convolution.
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Fig. 2. An overview of our proposed network based on attention unit and prior auxiliary constraints (expanding prat). The
expanding part contains a series of deconvolution layers, and we embed attention unit after each deconvolution operation. The

modified loss is combined with prior auxiliary assumptions.

Zhu and Newsam [16] design an unsupervised network using
dilated convolution. In contrast to [16], our method intro-
duces dilated convolution into the supervised network, which
improves the size of feature map without large computational
burden and preserves the details of motion. Xiang et al. [17]
combine prior assumptions with supervised loss term, which
can not only use prior knowledge but also use large amounts
of data during training. In addition, we also employ the
prior auxiliary constraints in our training loss. In summary,
we propose a novel network for learning optical flow, called
AD-Net, which is combined with the attention mechanism,
dilated convolution and prior auxiliary constraints.

We summarize our contributions as follows:

1) We introduce attention mechanism into learning optical
flow network.

2) We learn optical flow in supervised manner incorporat-
ing dilated convolution operation.

3) In addition, our supervised network is combined
with prior auxiliary constraints which are widely used in
knowledge-driven methods.

2. METHOD

In Section 2.1, we first explain how to integrate attention
mechanism into learning optical flow. Then, we mainly in-
troduce how we incorporate dilated convolution for optical

flow estimation in Section 2.2. The training loss is detailed
in Section 2.3. Our network is based on encoder-decoder
architecture. The encoder part is shown in Fig. 1, which is
combined with attention unit and dilated convolution. The
decoder part is shown in Fig. 2, which is combined with
attention unit and the prior auxiliary constraints. The detail
of attention unit is shown in Fig. 3.

2.1. Attention Guided Networks
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Fig. 3. The attention unit proposed in [12] contains five parts:
global average pooling, convolution layer with 1*1 kernel,
ReLU, sigmoid and scale layer. H, W and C' are height,
width and channel number of feature map.

Existing deep convolutional neural network based meth-
ods for optical flow estimation such as [4, 5, 6] have mostly
focused on accuracy, but do not pay much attention to the
important motion details. Inspired by [12], we introduce at-
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Fig. 4. Visual examples of predicted optical flow from different methods on MPI-Sintel dataset (final version). The results of

FlowNetS, FlowNetC and AD-Net are shown from left to right.

tention mechanism into flow estimation network. Fig. 1 and
Fig. 2 show the modified encoder and decoder parts based on
FlowNetS, which are similar to FlowNetS but incorporate the
attention units and dilated convolution (described in Section
2.2). The numbers of feature maps for the layers from Convl
to De-Conv2 are 64, 128, 256, 256, 512, 512, 512, 512, 1024,
1024, 512, 256, 128, 64 respectively. As shown in Fig. 1 and
Fig. 2, from Conv3 to De-Conv2, we implement the atten-
tion units that are designed to change the weights of different
channels according to the global information. The detail of
attention unit is shown in Fig. 3. H and W are the height
and width of image. First, the input feature (H * W x C) are
fed into a global average pooling layer followed by two 1 x 1
convolution layers, which produces a 1% 1% C tensor where C'
is the number of channels of input. The value in this 1 x 1 x C
tensor represents the weight of different channels. Then, the
1% 1 % C tensor is reshaped as H x W x C. r is the reduction
ratio. In our network, r is set to 16. Finally, the input feature
is weighted by element-wise multiplication operation.

2.2. Dilated Convolution

The previous encoder-decoder networks for optical flow esti-
mation, such as FlowNetS and FlowNetC, usually loss motion
details due to convolutional stride and deconvolution opera-
tion, which may impede dense prediction tasks such as opti-
cal flow estimation. Detailed spatial information is desired in
optical flow estimation. To solve this problem, one strategy is
to keep the resolution of the feature maps unchanged directly.
However, this approach increases the number of parameters
and computational burden of the model.

Dilated convolution, is first proposed in semantic segmen-
tation [15], which can increase the receptive field of the con-
volutional kernel without reducing the resolution of feature
map. Using dilated convolution in network can extract more
comprehensive feature information while keeping the spatial
resolution of feature maps unchanged, which is significant for

dense optical flow estimation. So, we adopt dilated convolu-
tion in our network. From Fig. 1, we can see that six di-
lated convolution layers are embedded in contracting part. In
FlowNetS, the original minimum resolution of feature map is
1/64 of input. After using dilated convolution, the minimum
resolution of feature map is kept at 1/8 of input. From Conv4
to Conv6_1, the rates of dilation are set as 2, 2, 4, 4, 8, 8
respectively.

2.3. Training loss

Most supervised methods [4, 5] only use endpoint error (EPE)
as a loss term to guide the training of network. The goal of
training is to minimize the EPE loss. However, these methods
overemphasize the factor of deep learning and ignore advan-
tages of prior constraints used in knowledge-driven methods.
The previous work [17] proposes a loss function for train-
ing optical flow, which combines the prior assumptions used
in knowledge-driven methods with the EPE loss term. The
whole loss function contain four terms: brightness constancy
loss, gradient constancy loss, smoothness loss and EPE loss.
In our network, we also use the same loss function during
training. From Fig. 2, we can find that the modified loss is
calculated at different stages.

3. EXPERIMENTS

3.1. Training Details

Our network was trained on FlyingChairs and FlyingTh-
ings3D datasets. We used Caffe [18] as deep learning frame-
work. The network were trained on a NVIDIA 1080Ti GPU.
We used Adam optimizer and first trained our network on
FlyingChairs dataset with 1200k iterations. The learning rate
was set to 0.0001 which was later divided by 2 every 200k
iterations after the first 400k. The batch size on FlyingChairs
dataset was set to 8. Second, we fine-tuned our network on

2209



Table 1. Performance comparison on public benchmarks

Sintel Sintel KITTI
Method clean final 2012
Train Test Train  Test Train
DenseFlow [7] - - - 10.07 -
FlowNet2-S [5] | 3.79 - 4.93 - -
UnsupFlow [6] - - - - 11.3
Occ-Aware [8] 523 802 634 9.08 12.95
FlowNetS [4] 450 742 545 8.43 8.26
FlowNetC [4] 431 7.28 587 881 9.35
AD-Net 305 646 471 7.1 6.01

FlyingThings3D dataset with 500k iterations. The learning
rate was set to 0.00001 and divided it by 2 every 100k after
the first 200k iterations. The batch size on FlyingThings3D
dataset was set to 4. The whole training process is same as the
process of training sub-network proposed in [5]. We further
tested our model on MPI-Sintel and KITTI2012 datasets. The
weights of the modified loss function were set according to
[17].

3.2. Results

In Table 1, we compared our network with recent data-based
approaches [4, 5, 6, 7, 8] on MPI-Sintel and KITTI2012
benchmarks. Among them, [4, 5] are supervised approaches,
and [6, 7, 8] are unsupervised approaches. We use the av-
erage endpoint error (AEE) as the criterion for evaluation.
Table 2 reports the performance comparison on public bench-
marks. Our method achieves better results than FlowNetS
and FlowNetC on Sintel and KITTI datasets. We also per-
forms better than unsupervised methods [6, 7, 8]. Comparing
to FlowNet2-S [5], our method can performs better results
on Sintel dataset. [5] also proposes other network that stacks
several sub-networks. The stacked network can obtain better
results than our method. However, each sub-network needs
to be trained one by one and the total number of iterations
is more than our iterations. The running time of our method
is 0.4s per frame on KITTI2012 dataset. The experimental
results show that using attention mechanism and dilated con-
volution is beneficial for optical flow estimation. We further
show some example estimations on Sintel final dataset in Fig.
4. We can find that our method can preserve more motion
details than FlowNetS and FlowNetC and can obtain clear
motion edges.

3.3. Ablation Study

In this section, we conduct several experiments to evaluate
the effectiveness of our proposed method. To facilitate com-
parison, we trained the follows network only on FlyingChairs
dataset with short training schedule proposed in [4], and
compared to original FlowNetS. On MPI-Sintel final dataset

Table 2. Ablation study

Attention Dilated Auxiliary | Sintel
mechanism  convolution constraints | (AEE)
No No No 5.45
Yes No No 5.16
No Yes No 491
No No Yes 5.02
Yes Yes Yes 4.71

(training), the AEE of original FlowNetS is 5.45. The AEE
of our models are shown in Table 2.

Attention mechanism. We added attention units into
FlowNetS network. From Table 2, we can find that the AEE
drops about 5.3% compared with FlowNetS.

Dilated convolution. We further only introduced dilated
convolution into FlowNetS. The experimental results show
that the dilated convolution has about 9.9% improvement on
the results.

Prior auxiliary constraints. From Table 2, we can find
that using prior auxiliary constraints can reduce the average
endpoint error about 7.9%, which proves the effectiveness of
our method.

4. CONCLUSION

In this paper, we introduce attention mechanism, dilated con-
volution and prior auxiliary constraints into the supervised
network for learning optical flow. The attention mechanism
performs feature refinement in network, which can correct
the weight of the feature map according to the global in-
formation. Moreover, unlike previous works that typically
reduce spatial resolution of the feature maps, we employ
dilated convolution which preserves motion details without
large parameters. In addition, we further combine the prior
constraints with CNNs, which can constrain the relationship
between the image and optical flow during training. We
evaluate the proposed method both numerically and quali-
tatively on the benchmark datasets, such as MPI-Sintel and
KITTI2012. The experimental results indicate that flow fields
estimated by our network are more sharper and have rich
motion details.

5. REFERENCES

[1] B. Horn and B. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, no. 1, pp. 185 — 203,
1981.

[2] D. Sun, S. Roth, and M. J. Black, “Secrets of op-
tical flow estimation and their principles,” in 2010
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), June 2010, pp. 2432—-
2439.

2210



(3]

(4]

(3]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

[13]

T. Brox and J. Malik, “Large displacement optical flow:
Descriptor matching in variational motion estimation,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 33, no. 3, pp. 500-513, March 2011.

A. Dosovitskiy, P. Fischery, E. Ilg, P. Husser, C. Hazir-
bas, V. Golkov, P. v. d. Smagt, D. Cremers, and T. Brox,
“Flownet: Learning optical flow with convolutional net-
works,” in 2015 IEEE International Conference on
Computer Vision (ICCV), Dec 2015, pp. 2758-2766.

E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy,
and T. Brox, “Flownet 2.0: Evolution of optical flow es-
timation with deep networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 1647-1655.

Jason J. Yu, Adam W. Harley, and Konstantinos G. Der-
panis, “Back to basics: Unsupervised learning of optical
flow via brightness constancy and motion smoothness,”
in Computer Vision — ECCV 2016 Workshops, 2016, pp.
3-10.

Y. Zhu and S. Newsam, “Densenet for dense flow,” in
2017 IEEE International Conference on Image Process-
ing (ICIP), Sept 2017, pp. 790-794.

Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao,
Peng Wang, and Wei Xu, “Occlusion aware unsuper-
vised learning of optical flow,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
June 2018.

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and
C. Schmid, “Deepflow: Large displacement optical
flow with deep matching,” in 2013 IEEE International
Conference on Computer Vision (ICCV), Dec 2013, pp.
1385-1392.

L. Bao, Q. Yang, and H. Jin, “Fast edge-preserving
patchmatch for large displacement optical flow,” IEEE
Transactions on Image Processing, vol. 23, no. 12, pp.
4996-5006, Dec 2014.

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and
C. Schmid, “Epicflow: Edge-preserving interpolation
of correspondences for optical flow,” in 2015 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2015, pp. 1164-1172.

Jie Hu, Li Shen, and Gang Sun, “Squeeze-and-
excitation networks,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June
2018.

Shuhan Chen, Xiuli Tan, Ben Wang, and Xuelong Hu,
“Reverse attention for salient object detection,” in
The European Conference on Computer Vision (ECCV),
September 2018.

2211

[14]

[15]

[16]

[17]

(18]

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bi-
neng Zhong, and Yun Fu, “Image super-resolution us-
ing very deep residual channel attention networks,” in
The European Conference on Computer Vision (ECCV),
September 2018.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille, “Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 4, pp.
834-848, April 2018.

Y. Zhu and S. Newsam, ‘“Learning optical flow via
dilated networks and occlusion reasoning,” in 2018
25th IEEE International Conference on Image Process-
ing (ICIP), Oct 2018, pp. 3333-3337.

X. Xiang, M. Zhai, R. Zhang, Y. Qiao, and A. El Sad-
dik, “Deep optical flow supervised learning with prior
assumptions,” [EEE Access, vol. 6, pp. 43222-43232,
2018.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell, “Caffe: Convolutional archi-
tecture for fast feature embedding,” in Proceedings of
the 22Nd ACM International Conference on Multime-
dia, 2014, pp. 675-678.



		2019-03-18T11:18:42-0500
	Preflight Ticket Signature




