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ABSTRACT

Recently, convolutional neural networks (CNNs) have
seen great progress in classifying images. Action recog-
nition is different from still image classification; video
data contains temporal information that plays an im-
portant role in video understanding. Currently, most
CNN-based approaches for action recognition have exces-
sive computational costs, with an explosion of parame-
ters and computation time. The currently most efficient
method trains a deep network directly on compressed
video containing the motion information. However, this
method has a large number of parameters. We propose a
multi-teacher knowledge distillation framework for com-
pressed video action recognition to compress this model.
With this framework, the model is compressed by trans-
ferring the knowledge from multiple teachers to a single
small student model. With multi-teacher knowledge dis-
tillation, students learn better than with single-teacher
knowledge distillation. Experiments show that we can
reach a 2.4x compression rate in a number of parame-
ters and a 1.2x computation reduction with 1.79% loss
of accuracy on the UCF-101 dataset and 0.35% loss of
accuracy on the HMDB51 dataset.

Index Terms— Deep Convolutional Model Compres-
sion, Action Recognition, Knowledge Distillation, Trans-
fer Learning

1. INTRODUCTION

Human action recognition has been an active research
topic in computer vision because of its wide range of
applications, such as smart-home and driver monitor-
ing. Implementation of these applications using VLSI or
embedded computing systems has low-power and real-
time requirements. Recently, convolutional neural net-
works (CNNs) have seen great progress in classifying im-
ages; ConvNets have also been considered to solve ac-
tion recognition problems. Most current CNN-based ap-
proaches for action recognition are based on the two-
stream [1] and 3D convolutional (C3D) [2] approaches.
For two-stream-based approaches [1, 3, 4, 5, 6], the
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input to the spatial and temporal streams is RGB frames
and stacks of multiple-frame dense optical flow fields,
respectively. Using dense optical flow information for
action recognition usually has good accuracy, but it has
excessive computational costs.

C3D-based approaches [2, 7, 8] learn spatio-temporal
features with clips of multiple continuous frames; their
architecture contains 3D convolution and fully connected
layers, which cause an explosion of parameters and com-
putation time.

These methods are unable to perform action recog-
nition efficiently. Some approaches explored other ro-
bust deep video representations [9, 10], such as CoViAR
[10], to train a deep network directly on the compressed
video. Video compression techniques (such as MPEG
and H.264) retain only a few frames completely and re-
construct other frames on the basis of offsets from the
complete images, called motion vectors and residual er-
ror. They avoid calculating the dense optical flow due
to the motion vector and still achieve good performance.
They also achieve the best efficiency, while requiring a
far smaller amount of data. However, CoViAR has ex-
cessive storage size because of the number of parameters.
For embedded mobile applications, their size consumes
excessive storage/memory and computational resources.
Therefore, model size reduction becomes crucial.

In our work, we propose a multi-teacher knowledge
distillation framework to compress the CoViAR model.
We teach the student with the comprehensive knowledge
by integrating multiple teachers’ knowledge to improve
the accuracy after compression.

2. MULTI-TEACHER KNOWLEDGE
DISTILLATION FOR COMPRESSED VIDEO
ACTION RECOGNITION ON DEEP NEURAL

NETWORKS

2.1. Knowledge Distillation

Distillation [11] is a technique that transfers knowledge
from a cumbersome model to a small model; we call them
the teacher and student models, respectively. The stu-
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dent model has richer knowledge than a “vanilla” stu-
dent model, but has fewer parameters and complexity
than the original teacher model.

For video-level tasks, CoViAR [10] uses a sparse sam-
pling strategy [3] on an input video, where the sam-
ples distribute uniformly along the temporal dimension,
aggregating information from the samples during train-
ing. In our proposed multi-teacher knowledge distilla-
tion framework, the logits vector produced by the stu-
dent network for an input video v;,7 = 1, ..., N is repre-
sented by (zs)z, where the dimension of vector (z;); =
[(25)}, ...y (25)§] is the number of categories C'. The soft-
max layer converts the logits vector (z;); to a probability

distribution (q4); = [(gs)}, -, (¢5)¢],
(¢s)i = Softmaz((zs):) (1)

, where

 exp((2))
(@) = & exp((z))

On the other hand, the logits vector produced by
the teacher network for an input video v;,¢ = 1,..., N
is represented by (z:);, where the dimension of vector
(20)i = ((z0)}, ., (20)¢) is the number of categories C.
By introducing a parameter called temperature T, the
generalized softmax layer GSoftmax converts the log-
its vector (2;); to soft probability distribution (¢f); =
[(GF)L, s (aD)E),

(¢}): = GSoftmaz((z:);, T) (3)

forj=1,....C (2)

, Where

exp((21); /T)
Sopexp((2)f/T)

Distillation uses the class probabilities produced by
the teacher model as “soft labels” for training the student
model.

There are two objective functions when training the
student model. The first objective function £ minimizes
the cross entropy with the soft labels (g} ); and the soft
probability (¢1); produced by the student model. (¢I);
is computed by GSoftmazr with the same temperature
T as the teacher model,

(¢1); = GSoftmax((zs)s, T) (5)

(a)] = forj=1,..,C (4)

, where

;o))
0 = S cexp(( F7T)

The first objective function £ is

forj=1,..,C (6)

argr%i/nﬁl( )—argmm——zz g (¢1)§
i=1 c=1
(7)

where (¢7)¢ produced by the student is the probability
that the ith video belongs to the cth class, (¢} )$ is the
soft label produced by the teacher, W is the weights of
the student, N is the number of training videos, and C
is the number of total classes.

The second objective function L£o minimizes the cross
entropy with the hard labels -, and the probability

(¢s): produced by the student.

. 1
arg min Lo(W) = arg mmf— ZZ Yerue)s 0 (qs)§

i=1 c=1
(8)
where (g5)¢ produced by the student is the probability
that the ith video belongs to the cth class, (yirye)$ is the
hard label information, and (Yrue)§ =1 if the ith video
belongs to the cth class, otherwise (yyue)f = 0. W is
the weights of the student, N is the number of training
videos, and C' is the number of total classes.
The overall objective function L is a weighted average
of two different objective functions.

)+ (1 =A)Lo(W)

(9)
where W is the weights of the student and ) is a relative
weight.

. _ . T2
arg min L(W) = arg min M2 L (W

2.2. Distilling on a Given Input I-frame

In CoViAR architecture, the spatial network ResNet-152
spends more time than other temporal networks. For
this reason, we decided to compress the spatial network
to a smaller model. According to the ResNet architecture
for ImageNet [12], the number of parameters of ResNet-
152 is approximately 58.2 million, and for ResNet-18 is
approximately 11.2 million; the computational cost of
ResNet-152 is 11.3 GFLOPs, and that of ResNet-18 is 1.8
GFLOPs. The spatial network has a 5.2-fold compres-
sion rate and 6.28-fold computation reduction because of
model compression from 152 layers to 18 layers.

In our proposed multi-teacher distillation, we teach
the student more comprehensive knowledge which from
multiple teachers with different input types in an at-
tempt to increase accuracy. The teacher candidates are
from CoViAR separated models. For the case where all
three input types (I-frame image, motion vector, and
residual) are selected as teachers, we integrate the knowl-
edge from multiple teachers and teach the student this
comprehensive knowledge in the form of the soft label.
The soft label is a weighted average of different soft
probability distributions from multiple teachers. For the
three-teachers case, the teachers t1, t2 and t3 produce
soft probability distributions ¢, ¢ and ¢ with the
GSoftmax layer and the same temperature T'. The soft
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Fig. 1. Architecture of multi-teacher distillation on an
[-frame image.

label gl is a weighted average of ¢f;, gk, and ql;:

T X gl e X djh + ps X gl 10
4 = (10)
M1+ 2+ 3

where ¢, ¢, and g5 are weighted by 1, p2 and ps, re-
spectively. The architecture of three-teacher distillation
on an I-frame image is shown in Fig. 1.

2.3. Distilling on a Given Input P-frame

Although the temporal networks that take the motion
vector and residual as input have the smallest model size
in the ResNet series, they can also transfer more com-
prehensive knowledge by distillation. The architecture
of three-teacher distillation on a given motion vector or
residual is similar to Fig. 1, while the difference is that
we take motion vector or residual as input of student
network.

2.4. Multi-teacher to Multi-student mode

We utilize the knowledge distillation technique not only
to compress the spatial network model but also to pro-
mote the performance of temporal networks by multi-
teacher knowledge distillation. Fig. 2 shows that compre-
hensive knowledge from multiple teachers was taught to
different students with different input types separately,
and then the results of the separate students was fused
for final prediction.

3. EXPERIMENTAL RESULTS

We implemented our proposed architecture by using the
open-source PyTorch framework [13]. Our models were
pre-trained on the ILSVRC2012-CLS dataset [12], and
we optimized our architecture by using the mini-batch
and Adam optimizer [14] with a weight decay of 0.0001,

Multi-teacher Knowledge Distillation
I-frame | Teacher . Student | I-frame
ResNet-18 ResNet-18
Hi
Motion vector | Teacher [ Student | Motion vector
ector, | L
ResNet-18 H: ResNet-18
+ 1
Q
Residual | Teacher Hy Student | Residual
ResNet-152 ResNet-18
T
T 1

P-frame
Motion
vector

P-frame
Residual

Input

Fig. 2. Architecture of the multi-teacher to multi-student
mode.

eps of 0.001, initial learning rate of 0.003 for the input
I-frame image, learning rate of 0.01 for the input motion
vector, and learning rate of 0.005 for the input residual,
which is divided by 10 when the accuracy plateaus. We
trained and evaluated on a server with a 3.50-GHz Intel
i7-7800K CPU, 16 GB memory, and NVIDIA GeForce
GTX 1080 GPU.

3.1. Data Preprocessing

Following CoViAR [10], We used the MPEG-4 video cod-
ing format, which has on average 11 P-frames for ev-
ery I-frame. The input data (images, motion vectors,
and residuals) were extracted from the resized encoded
videos.

There are two restrictions on the input source while
distilling. First, the extracted data for teachers and stu-
dent must be from the same frame or from the same
group of pictures (GOP). Second, the extracted data for
teachers and student must have the same data augmen-
tation process which is following CoViAR [10], because
different preprocessing processes may affect teachers’ ob-
servations.

3.2. Dataset and Evaluation protocol

We evaluated our method on two action recognition
datasets, UCF-101 [15] and HMDB51 [16]. UCF-101
contains 13,320 videos from 101 action categories.
HMDB51 contains 6,766 videos from 51 action cate-
gories. Each video in both datasets is annotated with
one action label. Each dataset has three training/testing
splits for evaluation. We report the average performance
of the three testing splits.

During testing, we uniformly sampled 25 frames, each
with flips plus five corner crops, and then averaged the
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Fig. 3. Network computation complexity and accuracy
on UCF-101.
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Fig. 4. Network computation complexity and accuracy
on UCF-101. Node size denotes the input data size.

scores for final prediction following CoViAR [10].

3.3. Training and Testing Results

We compare the results of multi-teacher distillation with
the uncompressed CoViAR [10] model in Table 1. By
multi-teacher knowledge distillation, we compressed the
spatial network but observed a 3.08% loss in accuracy;
the temporal network on the input motion vector has a
3.82% increase in accuracy, and another temporal net-
work on the input residual has a 3.04% increase in accu-
racy. The final result after compression is shown in Table
2; we achieved a 2.4x compression rate on the number of
parameters with a 1.79% loss in accuracy on the UCF-
101 dataset and a 0.35% loss in accuracy on the HMDB51
dataset.

Figs. 3 and 4 summarize the results. Our model
achieves the best efficiency and has the fewest param-
eters, while having a far smaller input data size. Note
that some of the state-of-the-art methods in Figs. 4 can
achieve higher accuracy with large-scale video datasets.
For fair comparison, we used the accuracies observed for
training only on the UCF-101 dataset.

Table 1. Accuracy of the multi-teacher to multi-student
mode. The top half of the table is the baseline CoViAR,;
the bottom half of the table is the accuracy of fusing the
distillations on different inputs.

Input Architecture | UCF-101 HMDB51
Baseline Iframe ResNet-152 87.25 51.13
CoViAR mv ResNet-18 67.02 34.47

residual | ResNet-18 80.88 40.85

Fusion 90.29 56.51

Student | Architecture | UCF-101 HMDB51
Multi-teacher Iframe | ResNet-18 84.17 (-3.08) | 48.91 (-2.22)
Distillation mv ResNet-18 70.84 (+3.82) | 44.86 (+10.39)

residual | ResNet-18 83.92 (+3.04) | 48.39 (+7.54)

Fusion 88.50 (-1.79) | 56.16 (-0.35)

Table 2. Final results after compression.

Parameters

inference time

UCF-101 HMDB51 , GFLOPs
(M) (ms)
CoViAR | 90.29 56.51 80.64 4.2 12.88
Proposed | 88.50 (-1.79) | 56.16 (-0.35) | 33.6 (0.42x) | 3.5 (0.83x) | 6.88 (0.53x)

4. CONCLUSION

In this study, we compressed the model, which is cur-
rently the most efficient method for action recognition,
and improved the overall speed by using knowledge dis-
tillation technology to transfer its knowledge to a small
model. The small model has richer knowledge than the
“vanilla” small model, yet has fewer parameters and
less complexity than the original cumbersome models.
We also propose a multi-teacher knowledge distillation
framework for compressed video action recognition to
improve accuracy after compression. We integrated the
knowledge from different teachers; the comprehensive
knowledge can promote the performance of the student.
We explored multi-teacher knowledge distillation with
various combinations of different teachers to further ob-
serve its impact. Experiments show that we can reach a
2.4x compression rate and 1.2x computation reduction
with approximately 1.79% loss of accuracy on the UCF-
101 dataset and 0.35% loss of accuracy on the HMDB51
dataset. Our approach achieves the best efficiency and
has the fewest parameters, while having a far smaller
input data size.
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