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ABSTRACT

In this work, a novel deep rotation forest is proposed to
fuse hyperspectral (HS) and LiDAR. First, we extract the spa-
tial and elevation information of two datasets by using mor-
phological filters. Then, each feature source is applied to su-
perpixel segmentation and then are treated as the input of deep
rotation forest. In the deep rotation forest, the spatial rela-
tionships are fully considered, and the output probability of
each layer is used as the input of the next layer. Experimen-
tal results demonstrate that the excellent performance of the
proposed method.

Index Terms— Deep rotation forest, classification, hy-
perspectral, LiDAR

1. INTRODUCTION

The recent remote sensing sensors and technologies brings us
an opportunity to better understanding the objects of the earth
from different views [1–6]. For instance, hyperspectral distin-
guishes the objects using the detailed spectral information [7],
whereas light detection and ranging (LiDAR) separates the
objects using the height information [8].

The effectiveness of the combination use of hyperspectral
and LiDAR have been proved in the literature [1,3,4,6]. Re-
cently, few attentions have been paid to the joint use of mul-
tiple sources remote sensing datasets. For instance, Ghamisi
et al. [9] proposed to use deep convolutional neural networks
(DCNN) and extinction profiles (EPs) for the classification
of HS and LiDAR. Multiple-level deep learning was used to
classify crop areas with multi-temporal images [10].

Deep learning has been proved powerful in many fields [11,
12], however, they suffer to the following limitations [13]:

• they need a large number of training samples;

• they have many parameters that need to be tuned;

• they lacks theoretical explanation.

In order to alleviate the mentioned-above problems, we have
proposed to use deep forest [14], which consists of the cas-
cade structure of random forest and rotation forest [15]. Our
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studies indicated that deep forest is a good alternative to the
deep neural network with fewer tuning parameters and short
computational time.

In our previous work, we just use the stack morphological
features as the input of the deep forest. We do not consider
the spatial information in the construction of deep forest. In
this paper, we introduce the superpixel segmentation [16] to
consider the neighboring pixels and then formulate the spatial
information into deep forest. We fully exploit rotation forest
for the construction of deep forest.

2. HYPERSPECTRAL AND LIDAR DATASETS

Fig. 1. (Left) RGB composite of HS in the whole area .
(Right) RGB composite of HS and LiDAR @study areas (A)
and (B).

In this work, a mixed forest area, called Tama Forest Sci-
ence Garden, is chosen as the study area (seen in Fig. 1). HS
image was obtained from CASI-3 sensor (72 bands) and Li-
DAR was acquired by LMS-Q560 (Riegel). We use the dif-
ference between DEM and digital surface model (DSM) as
the feature of LiDAR. Both the datasets are re-sampled to 1
m [4].

Morphological openings and closings with partial recon-
struction are used to extract features of both HS and LiDAR.
For the HS data, the first three PCs are used [17]. Linear and
disk-shaped structuring elements (SE) are adopted. The open-
ings or closings over every 10◦ and use 10% of the length of
the linear SE is adopted with the range of 5-10 and step size
of 5. Thus, 20 opening and closings are obtained. For a disk-
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Fig. 2. The pipeline of our proposed approach.

shaped SE, the range is set to be from 1 to 15 with a step size
of 1. Then, we can obtain 15 opening and closing.

Kernel principal component analysis (KPCA) [18] is used
to make the same dimensions of three kinds of features (spec-
tral, spatial and elevation) and reduce the noise. Finally, three
kinds of features have the same dimensions (70).

3. OUR APPROACH

Our approach starts with a simple linear iterative cluster
(SLIC) superpixels. We first train a rotation forest to learn the
features among neighboring superpixels, and then directly
input them to the classification stage to produce the class
probabilities. Then, the average class probabilities and the
original features are used as the input of the next layer. In the
following, we details our approach with superpixel generation
and deep rotation forest (seen Fig.2).

3.1. Superpixel generation

SLIC method can be treated as the extension of K-means ap-
plied to the feature space, which both consider the color and
spatial information of each pixel. The size and the regular-
ity of superpixels are controlled by one specific parameter.
The computational speed is high, and the boundary proper-

ties are well maintained, so they make it possible to improve
efficiency and generalizable to multiple features [16].

In this work, SLIC superpixels are computed using all the
features of each source. The parameters in SLIC are empiri-
cally determined.

3.2. Deep rotation forest

Rotation forest aims at building various decision trees (DT)
based on random feature selection and data transforma-
tion [19, 20]. More specifically, the feature space of orig-
inal training set (X) is randomly divided into K subsets
(Xj , j = 1, 2, ...,K) with the dimension of M . Then, in each
subset, we select 75% size of the original training set and
unitize PCA to obtain the coefficients: v1j , ..., v

M
j . A rotation

matrix R is constructed as:

R =


v11 , ..., v

M
1 0 · · · 0

0 v12 , ..., v
M
2 · · · 0

...
...

. . .
...

0 0 · · · v1K , ..., vMK


R is rearranged to Ra to make the same order to the original
features. The new features are obtained by XRa. The above
steps is repeated several times to obtain multiple new features.

The deep forest model adapts the cascade structure of
many layers and each layer includes many decision forests.
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Fig. 3. Illustration of deep rotation forest (8 pixels in a patch).

In this work, the output of all former layers is used as the
inputs of current layer. The output is used for the training
for all following layers. The framework of the deep rotation
forest is shown in Fig. 3.

As shown in Fig. 3, the superpixels of training samples are
used for the training to include the spatial information. Just
taking one patch (8 pixels) as an example, in the first level, the
features (fi) of each training sample with its neighborhood
pixels are treated as the input of the rotation forest. Each ro-
tation forest will produce the new features (Fi) with the same
dimension of the original input features. Then, the new fea-
tures are fed into a random forest to generate classification
probability. The robust feature vectors can be obtained by the
average of the above classification probabilities. The average
classification probabilities and the new features extracted by
the rotation forests are combined for the training features of
next level. It should be pointed out that the averaged classifi-
cation probabilities are used for all subsequent levels. Finally,
the label is predicated with the maximum value from the clas-
sification probabilities of last level.

In our model, we apply deep rotation forest to the three
feature sources: spectral and MPs of HS and MPs of LiDAR,
respectively. The final classification result is obtained by their
combination outputs.

4. RESULTS AND ANALYSIS

In the deep rotation forest, we set the number of DTs in RF
and RoF to 10. The number of features in a subset (M ) is
set to be 10. 10% samples are randomly chosen from the
reference as the training set. The remaining are used for the
testing. The following methods are used to compare with our
proposed approach:

• the original HS (OriHS) with RF classifier;

• the MPs of the original HS (MPsHS) with RF classifier;

• the MPs of the LiDAR (MPsLi) with RF classifier;

• the stacked MPs of HS and LiDAR (MPsHSLi) with
RF classifier;

• the stacked features (Stack) with RF classifier;

• the stacked features with DCNN classifier [21];

• the stacked features with Deep forest (DF) classi-
fier [15];

To make a fair comparison with the deep forest in our pre-
vious study [15], we list the classification results of deep ro-
tation forest (1 level). Table 1 shows the accuracy values.
The classification maps are illustrated in Fig. 4. From Ta-
ble 1, the accuracies are low with single feature source (e.g.,
OriHS). Higher accuracies can be achieved by integrating
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Table 1. Classification accuracies obtained from different schemes.
Class Number OriHS MPsHS MPsLi MPsHSLi Stack DCNN DF DRoFTrain Test

California incense cedar 30 304 19.08 54.93 65.13 61.18 62.17 82.24 78.29 85.52
Bald cypress 93 927 59.12 89.75 88.24 90.18 91.26 96.12 94.39 95.79
Japanese cypress 300 2995 74.52 86.38 86.58 89.25 90.18 91.92 91.79 93.89

Japanese cedar 350 3492 81.16 90.26 89.58 93.93 93.70 94.73 97.19 97.11
Deodar cedar 83 833 66.51 95.20 86.31 93.88 95.92 97.12 97.96 98.08
Loblolly pine 33 332 25.30 79.82 71.69 81.63 84.34 82.83 90.96 93.37
Eastern white pine 58 579 66.32 92.57 95.68 90.67 95.68 97.41 98.45 98.79
Koyama’s sqruce 27 267 20.60 70.04 86.89 77.53 78.65 89.14 95.13 97.38
Momi fir 110 1095 67.14 73.61 68.04 74.98 78.54 86.39 85.11 91.32
American sweetgum 102 1019 63.30 94.50 93.72 95.29 94.11 89.60 95.19 95.19
Japanese bigleaf magnolia 76 762 44.36 64.57 69.29 67.72 71.78 77.03 79.53 81.36
Painted maple 76 755 37.18 84.11 74.16 80.66 83.31 83.18 82.78 85.30
Oriental raisin tree 36 361 37.67 81.72 86.98 82.83 84.21 85.60 91.69 90.02
Chinese evergreen oak 120 1204 36.71 80.56 76.25 77.82 82.89 81.48 86.46 90.19
Japanese blue oak 151 1505 41.26 81.00 71.56 83.06 86.38 80.53 89.57 90.70
Japanese blue oak 176 1755 61.08 81.77 82.45 85.01 84.33 84.56 90.60 92.88

OA 59.09 84.32 82.72 85.80 87.43 88.51 91.51 93.24
AA 48.57 81.30 80.93 82.74 84.78 87.38 90.32 92.30
κ 53.94 82.54 80.74 84.16 85.99 87.18 90.53 91.46

Fig. 4. (a) Ground truth. Classification maps of (b) DCNN.
(c) Deep Forest. (d) Deep Rotation Forest.

multiple feature sources (e.g., MPsHSLi and Stack). Com-
pared to DCNN and DF, the proposed deep rotation forest
yields the best performance. The OA and AA are 93.24%
and 92.30%, with the improvements of 2-3% than the ones of
DCNN and DF. DRoF also shows the best results in twelve in-
dividual classes. Additionally, DRoF is efficient than DCNN.

Fig. 5 shows the sensitivity analysis of the number of lev-
els. For the deep forest, when the number of levels exceeds
three, the performance decreases. For the DRoF, the accura-
cies significantly increase and become stable after four levels.

Fig. 5. Sensitivity analysis of number of levels.

5. CONCLUSION

In this work, a classification framework of hyperspectral and
LiDAR with deep rotation forest is developed. We consider
three kinds of features: spectral features of HS, MPs of HS
and MPs of LiDAR. The final result is integrated by the re-
sults achieved by each feature source with the deep rotation
forest. To incorporate spatial information, SLIC is introduced
into the deep rotation forest. The proposed method obtains
competitive performances.
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