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ABSTRACT

Various saliency detection algorithms from color images
have been proposed to mimic eye fixation or attentive ob-
ject detection response of human observers for the same
scenes. However, developments on hyperspectral imaging
systems enable us to obtain redundant spectral information
of the observed scenes from the reflected light source from
objects. A few studies using low-level features on hyper-
spectral images demonstrated that salient object detection
can be achieved. In this work, we proposed a salient object
detection model on hyperspectral images by applying mani-
fold ranking (MR) on self-supervised Convolutional Neural
Network (CNN) features (high-level features) from unsuper-
vised image segmentation task. Self-supervision of CNN
continues until clustering loss or saliency maps converges to
a defined error between each iteration. Finally, saliency esti-
mations is done as the saliency map at last iteration when the
self-supervision procedure terminates with convergence. Ex-
perimental evaluations demonstrated that proposed saliency
detection algorithm on hyperspectral images is outperforming
state-of-the-arts hyperspectral saliency models including the
original MR based saliency model.

Index Terms— Hyperspectral image, Unsupervised
learning, Convolutional Neural Networks, Manifold rank-
ing, Salient object detection

1. INTRODUCTION

Reflected light from objects and radiance from a light source
has information at various wavelengths both in visible and
non-visible spectrum to human eye [1, 2, 3, 4, 5]. With
the recent advancements on hyperspectral imaging sys-
tems, unlike the conventional cameras providing images with
1(monochrome images) or 3 channel (e.g. RGB or YCbCr
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images), hyperspectral imaging systems enable researchers
the opportunity to capture data from the observed scenes
with high spatial and redundant spectral resolution (both vis-
ible and non-visible spectrum to human eye) of the observed
scenes from the radiance or reflected light source from objects
[2, 3, 4, 5]. These data have been used in many applications
such as remote sensing, scene analysis or object detection
[2, 6, 7, 8, 9, 10, 11], spectral estimation[11, 12, 13, 14], etc..

Visual attention modeling (saliency detection) [15, 16, 17,
18, 19, 20, 21] is a promising research field for practical ap-
plications, which may benefit many other applications on hy-
perspectral data processing stated prior. For instance, a few
studies [7, 8, 9, 10] demonstrated that salient object detection
can be achieved by using low-level features on hyperspectral
images. In contrast to these models relying on low-level fea-
tures or hand-crafted features to obtain saliency maps, higher-
level features can be extracted and used in a self-supervised
manner for hyper-spectral data, where each spectral bands’
contribution to the representation can be learned with unsu-
pervised neural network used for segmentation task [22]. In
addition, works on hyperspectral saliency on natural scenes
were mostly tested on dataset with a few hyperspectral im-
ages ([7] used 13 images and [8] used 17 images) collected
and selected from various hyperspectral data. Moreover, these
hyperspectral data was not collected and created for the pur-
pose of salient object detection. And, quantitative evaluations
of the models were mostly limited to Precision-Recall and
F-measure metrics. Therefore, we believe that a dataset cre-
ated specifically for salient object detection should be used
for evaluating the models with various metrics.

Proposed work and contributions: In this work, we
propose a salient object detection model (see Figure 1) on
hyperspectral images by applying manifold ranking [17] to
self-supervised Convolutional Neural Network (CNN) fea-
tures (high-level features) learned by an unsupervised image
segmentation task [22]. Self-supervision of CNN continues
until clustering loss or saliency map computed from CNN
features converges to a defined error difference between each
iteration. Then, saliency map at the last iteration is used as the
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Fig. 1. Proposed hyperspectral salient object detection model with unsupervised deep features .

Table 1. The detailed configuration of the CNN model. Note
that BN represents batch normalization operation.

layer # filters kernel stride
Conv. + Relu + BN 64 3 × 3 1 × 1

Maxpooling - 2 × 2 2 × 2
Conv. + Relu + BN 64 3 × 3 1 × 1

Maxpooling - 2 × 2 2 × 2
Conv. + Relu + BN 64 3 × 3 1 × 1

Upsampling - 2 × 2 2 × 2
Deconv. + Relu + BN 64 3 × 3 1 × 1

Upsampling - 2 × 2 2 × 2
Deconv. + Relu + BN 64 1 × 1 1 × 1

result of proposed model when the self-supervision procedure
terminates.

To the best of our knowledge, there are not any works on
hyperspectral salient object detection for natural scenes as a
self-supervised approach, which combines unsupervised seg-
mentation using CNN and salient object detection task on the
scene. Regarding the approach, contributions or differences
of the proposed model can be explained as: First, unsuper-
vised segmentation task used in previous paper [22] takes ad-
vantage of cluster refinement process based on the superpix-
els obtained by the input color image. However, in this work,
we apply the refinement process based on the superpixels ob-
tained by the high-level features of the CNN (see Fig.1) that
takes hyperspectral image as input. Interestingly, this pro-
cess resulted in better saliency detection performance and it
seemed faster convergence regarding the segmentation task.
Second, in contrast to the saliency model with manifold rank-
ing (MR) in [17] using low-level features, we utilized self-
supervised deep-features with higher order semantics, which
seems to improve the saliency detection performance drasti-
cally compared to study in [17]. Then, unlike the CNN model

used in [22], we included max-pooling for down-sampling
and we replaced last two CNN layers with deconvolution lay-
ers as in Table 1. Finally, self-supervision of CNN model
does not need to finalize until a defined maximum iteration
because we check clustering loss and saliency map for termi-
nation; in addition, saliency results of proposed model seems
to converge faster than the segmentation task in most cases
while using self-supervised deep features on manifold rank-
ing based saliency detection. Experiments demonstrated that
proposed saliency detection algorithm on hyperspectral im-
ages is outperforming state-of-the-arts hyperspectral saliency
models including the original MR [17] saliency model.

2. SELF-SUPERVISED SALIENT OBJECT
DETECTION ON HYPERSPECTRAL IMAGES

To achieve salient object detection goal in Fig. 1, we pro-
pose to use an unsupervised backpropagation semantic seg-
mentation method [22] to learn high-level visual features
that will be used in the manifold raking algorithm [17] for
saliency computation. Given k channels hyperspectral im-
agery I = {Hk}kn=1 as input to our model, first, all the pixel
values are normalized to [0,1]. Then, we adopt a CNN model
to extract p-dimension feature maps {xn} from the Batch-
Normalization (BN) output of the last Deconvolution layer of
model getting hyperspectral imagery I as input. The detailed
configuration of the CNN model is shown in Table 1. Note
that the spatial resolution of output feature map and input
hyperspectral image I are identical. After normalizing the
learned response maps via batch normalization as in [22], we
obtain cluster label {cn} by using argmax classification to the
feature maps to classify each pixel by choosing the dimension
that has the maximum value as {yn} [22]. Then, we apply the
refinement process on {cn} based on the superpixels obtained
by the high-level features of the CNN (see Fig. 1) in contrary
to [22] using superpixels based on the input data (e.g. hyper-
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Table 2. The performance of different saliency detection methods are given as values with Red, Green, and Blue colors indicate
the best three results in respective order. Note that larger AUCBorji, CC, Fβ , maxFβ , aveFβ , Precision, Recall, NSS values,
and smaller KLdiv values means better performance.

Model AUCBorji CC Fβ maxFβ aveFβ Precision Recall NSS KLdiv

Itti et al. [15, 7] 0.7774 0.3536 0.3530 0.3754 0.1674 0.1909 0.2329 1.3636 2.3186
SED [7] 0.7691 0.2797 0.3082 0.3420 0.1541 0.3479 0.1207 1.3498 2.3426
SAD [7] 0.7707 0.3034 0.2635 0.2662 0.1397 0.1547 0.2314 1.1767 2.2719
GS [7] 0.7781 0.3403 0.3004 0.3694 0.1861 0.2753 0.2275 1.5637 2.1944

SED-OCM-GS [7] 0.8021 0.3730 0.3260 0.3634 0.1708 0.2757 0.2209 1.5908 2.1707
SED-OCM-SAD [7] 0.8108 0.3882 0.2635 0.2662 0.1397 0.1547 0.2314 1.5301 2.1601

SGC [8]* 0.8252 0.5012 0.1891 0.2214 0.1815 0.2344 0.2822 1.4739 2.2154
HS-MR [17]** 0.7369 0.3492 0.3636 0.4308 0.3638 0.4397 0.3587 1.2702 3.7637
SUDFHS−Slic 0.8509 0.5563 0.4580 0.5355 0.4430 0.5346 0.4449 2.1938 1.7853
SUDFHF−Slic 0.8602 0.5829 0.4671 0.5654 0.4668 0.5436 0.4834 2.1200 1.7241

*SGC [10] The codes were not available for [10] so the implementation was done by the authors in Matlab based on the paper [10]
**HS-MR [17] saliency detection is originally for color images; however, published codes by the authors can be used for
hyperspectral data for MR and superpixel methods in the code.

spectral image). Refinement process is achieved by assigning
all pixels same cluster label based on the highest frequency
of label in the superpixel area [22].

Fig. 2. (top) sample image and segmentation results at differ-
ent iterations during self-supervision, (bottom) ground-truth
image and saliency maps from different iterations.

Similar with the supervised learning, we use the softmax
cross entropy loss between the network responses {yn} and
the refined cluster labels {cn} at iteration n [22]. Using this
error with back-propagation, the parameters of convolutional
and deconvolution filters are updated by utilizing gradient-
descent with momentum [22]. As in [22], Glorot and Ben-
gio method [28] is employed for the parameter initialization,
which uses uniform distribution normalized according to the
input and output layer size. While self-supervising the net-
work for unsupervised segmentation task, at each iteration,
{xn} is used to obtain saliency map by employing MR [17]
with multi-channel. For the model, we use two main termina-
tion conditions as:

Li+1 − Li ≤ ε1 (1)
Si+1 − Si ≤ ε2 (2)

where Li+1 and Li denote the cross-entroppy losses of step
(i + 1) and (i), Si+1 and Si denote the predicted saliency
maps of step (i+1) and (i), ε1 and ε2 are defined small non-
zero constants to terminate the training process. Also, when

the training step N achieve maximum value κ = 200, it will
stop the process. It should be noted that self-supervised lear-
ing on each image treated independent of the other remain-
ing images on the dataset by initiliazing the parameters of
the model and learning procedures from the begining for each
image sample. In Fig. 2, unsupervised segmentation outputs
and computed saliency maps are shown for different iterations
of self-supervised learning. It can be seen that saliency map
results are converging even though clustering through self-
supervision is not giving optimal segmentation result yet.

3. EXPERIMENTAL RESULTS

Metrics: We made extensive evaluation (see Table 2) based
on various performance metrics [24, 25, 26, 27] such as Area
Under Curve (AUCBorji), Cross Correlation (CC), Normal-
ized Scanpath Saliency (NSS), Kullback-Leibler divergence
(KLdiv), Precision, Recall, F-measure (Fβ , maxFβ , aveFβ)
with Precision-Recall or Precision-Recall Curves.

Dataset: We made evaluation of the model on hyper-
spectral salient object detection (HS-SOD) dataset [5] con-
sisting of 60 hyperspectral images with their respective binary
ground-truth images referring to salient objects. The dataset
details can be seen in [5], and is available on [28]. For each
image, spatial resolution is 768x1024 pixels, and there are
81 spectral channels covering the wavelengths between 380-
780nm (visible spectrum) with 5nm intervals [5].

Evaluation: We selected [7] and [8] for comparison as
being the hyperspectral salient object detection models for
natural scenes. In work [7], various approaches were tested
on hyperspectral data so we also apply the approaches tested
in [7] on HS-SOD dataset [5] for comparison. i) spectral
distances between each spatial region for saliency computa-
tion by using spectral Euclidean distance (SED) and spectral
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Fig. 3. (a) Sample scenes of the the hyperspectral data rendered in sRGB with its respective (b) ground-truth salient objects,
and saliency map results of the compard models: (c) Itti et al. [15, 7], (d) SAD [7], (e) SED [7], (f) SED-OCM-GS [7], (g)
SED-OCM-SAD [7], (h) SGC [8], (i) HS-MR [17], (j) Proposed SUDFHF−Slic

Angle distances (SAD) [7, 5], ii) color opponency method in
[15, 7] is replaced by spectral grouping rather than Red-Green
and Blue-Yellow differences, in which Euclidean distance be-
tween spectral group (GS) vectors by dividing spectral bands
into four groups (G1,G2,G3,G4) [7, 5]. iii) In [5], spectral
distance based saliency also combined with orientation based
saliency with combinations such as SED-OCM-GS and SED-
OCM-SAD. iv) saliency maps from Itti et al. [15] were also
provided for hyperspectral saliency comparison in [7, 5] as
a baseline model. As a more recent work, we also tested
saliency from spectral gradient contrast (SGC) proposed by
[8]. In [8], local region contrast is computed from the su-
perpixels obtained by spatial and spectral gradients, which is
used to calculate spectral gradient contrast (SGC) for saliency
detection [8, 5].

In addition, saliency detection by graph-based manifold
ranking (MR) is also applied on hyperspectral dataset, re-
ferred as HS-MR [17] to compare with the proposed model
SUDFHF−Slic (SUDF: Saliency from Unsupervised Deep
Features ), which uses higher-level features for both MR
based saliency and cluster refinement compared with the
original approaches in [17] and [22]. In addition, to demon-
strate the performance improvement on saliency detection
when the cluster refinement is done on high-level fetures, we
also implemented and compared saliency computation when
cluster refinement is done based on input hyperspectral image
that is referred as SUDFHS−Slic.

As it can be seen in Table 2, proposed SUDFHF−Slic per-
forms better than other approaches in all metrics except being
second best on NSS. However, although the performance
difference is very close with SUDFHF−Slic, best perform-
ing model in NSS metric is also a variation of the proposed
approach, SUDFHS−Slic which applies cluster refinement
based on the superpixels obtaind from hyperspectral image
directly as in the original work [22]. In addition, proposed

SUDFHF−Slic demonstrated that using higher-level fea-
tures even learned from self-supervision is more beneficial to
saliency computation using manifold-ranking since proposed
SUDFHF−Slic outperformed HS-MR [17] manifold-ranking
using low-level features in all evaluation metrics. In Fig. 3,
some sample scenes for hyperspectral data are given rendered
in sRGB for visualization with their respective grount-truth
images for salient objects, and saliency maps results of vari-
ous approaches on these scenes are also given to demonstrate
the performance of proposed model SUDFHF−Slic with re-
spect to other models. It can be seen from the saliency maps
that our model performs better qualitatively too.

4. CONCLUSION

In this work, we demonstrated hyperspectral salient object
detection approach based on self-supervised deep features in
a multi-task model. Paramater update of the CNN model is
done based on cross-entropy loss of clustering performance,
and saliency is computed by the learned features of the unsu-
pervised segmentation task, in which saliency convergence is
the termination criteria for the self-supervised learning pro-
cedure. Evaluation on the HS-SOD dataset [5] demonstrates
promising results for salient object detection with the pro-
posed approach. As a future work, we would like to inves-
tigate how to improve representation of hyperspectral image
during self-supervision process (e.g. adding sparsity loss, or-
thogonality constraint, decoder based image generation loss,
etc. ) to improve the accuracy for salient object detection and
also to increase the convergence on clustering and saliency
map results. Moreover, we would like to investigate other op-
tions for saliency computation compared to MR model since
it assumes boundary prior for background regions.
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