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ABSTRACT

This paper proposes a low-rank and sparse regularized optimization

model to address the problem of wall clutter mitigation, stationary,

and moving target indications using through-wall radar. The task of

wall clutter suppression and target image reconstruction is formu-

lated as a nuclear and ℓ1 penalized least squares optimization prob-

lem in which the nuclear-norm term enforces for a low-rank wall

clutter matrix and the ℓ1-norm term promotes the sparsity of the tar-

get images. An iterative algorithm based on the proximal gradient

technique is introduced to solve the optimization problem. The solu-

tion comprises the wall clutter and images of stationary and moving

targets. Experiments are conducted on real radar data under com-

pressive sensing scenarios. The results show that the proposed model

is very effective at removing unwanted wall clutter, reconstructing

stationary targets, and capturing moving targets.

Index Terms— Through-the-wall radar imaging, moving target

indication, wall clutter mitigation, compressive sensing.

1. INTRODUCTION

In urban sensing, through-wall radar imaging (TWRI) is a useful

technology to image targets behind walls and other visually opaque

materials. This capability has several potential applications in

search-and-rescue, law-enforcement, and military operations [1]. In

these applications, it is vital to provide high-resolution radar imag-

ing of stationary and moving targets. This task, however, is difficult

due to prolonged data collection and strong wall clutter [2–4]. To

alleviate the burden of data collection, the problem of wall clutter

mitigation, stationary, and moving target indications (MTI) needs to

be tacked in the context of compressive sensing (CS) [5].

Several CS-based methods for radar imaging of stationary or

moving indoor targets [6–11] mitigate wall clutter using background

subtraction. The background subtraction effectively removes non-

target clutter, but it relies on the access to a reference scene, which is

unavailable for non-surveillance operations. To overcome this issue,

multistage CS-based methods [12–15] first perform antenna signal

estimation, then use a clutter mitigation technique, such as spatial

filtering [2] or subspace projection [3] to estimate target signals, and

finally reconstruct the target image. However, multistage processing

could suffer from uncertainty and suboptimality of solution. Recent
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approaches perform wall clutter suppression and image reconstruc-

tion jointly, but these methods do not consider the problem of MTI

in the imaging model [16, 17].

In general radar imaging of moving targets, Doppler processing,

time-frequency representation, or change detection (CD) techniques

can be used. For through-wall radar (TWR) sensing, however,

changes in the phase of target signals do not necessarily lead to

Doppler frequency shifts, making Doppler-processing ineffective

[18, 19]. Time-frequency analysis is useful for regular motion

detection, but it is complex to interpret TWR signals with non-

homogeneous walls [20]. Therefore, CD was employed in several

approaches for TWRI of moving targets [21–25]. The foundation of

CD is that moving targets can be detected by subtracting successive

datasets collected over several scans. In [21], MTI was obtained by

applying CD to range profiles over consecutive datasets. In [22, 23],

CD was applied to images formed using datasets collected at dif-

ferent time intervals. In the context of CS, CD was employed for

removing stationary clutter, enabling the reconstruction of a sparse

image of moving indoor targets [26, 20]. The combination of CD

and CS allows MTI using reduced data, but CD suppresses also the

stationary targets and thereby making them undetectable.

In this paper, wall clutter is captured using a low-rank regular-

ization, and stationary and moving indoor targets are modeled using

sparse representation. The task of wall clutter mitigation, stationary

target reconstruction, and MTI is formulated as a composite nuclear-

norm and ℓ1-norm regularized least squares (LS) problem. To solve

this problem efficiently, an iterative algorithm based on the proximal

gradient technique is developed, capturing wall clutter and yielding

a set of images of moving and stationary targets.

The remainder of the paper is organized as follows. Section 2 in-

troduces the TWR signal model and discusses the combination of CS

with CD techniques for MTI. Section 3 describes the optimization

model for radar imaging of stationary and moving targets. Section 4

presents the experimental results. Finally, Section 5 gives conclud-

ing remarks.

2. TWR SIGNAL MODEL AND CD-BASED MTI

Consider a TWR system used to image targets behind a wall. To

monitor moving targets, data collection is performed over I time in-

tervals. At the ith interval, the radar imaging system uses N anten-

nas and M narrowband signals to image the scene. Let zi(m,n) be

the mth frequency radar signal received by the nth antenna for the

ith interval. The signal zi(m,n) can be modeled as a superposition

of the wall reflection zwi (m,n), stationary target return zsi (m,n),
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moving target echo zmi (m,n), and noise υi(m,n):

zi(m,n) = zwi (m,n) + zsi (m,n) + zmi (m,n) + υi(m,n). (1)

The wall component zwi (m,n) can be expressed as [12]

zwi (m,n) =

R
∑

r=1

σware
−j2πfmτr

n,w , (2)

where σw is the reflectivity of the wall, R is the number of wall re-

verberations, ar is the path loss factor of the rth wall return, and τrn,w

is the propagation delay of the rth wall reverberation. The stationary

target return is modeled as the superposition of P nonmoving target

reflections [15]:

zsi (m,n) =

P
∑

p=1

σpe
−j2πfmτn,p , (3)

where σp is the reflectivity of the pth target, and τn,p is the round-

trip travel time of the signal from the nth antenna location to the

pth target. The term zmi (m,n) is modeled as the superposition of Q
moving targets:

zmi (m,n) =

Q
∑

q=1

σi
qe

−j2πfmτn,q , (4)

where σi
q is the reflectivity of the qth target at the ith interval, and

τn,q is the round-trip travel time of the signal from the nth antenna to

the qth target. Note that the moving target appears stationary during

the ith interval since it is a fraction of a second.

For image formation, the signal model in Eqs. (3) and (4) can

be expressed in a vector-matrix form relating the signal to the target

space. The indoor target space is partitioned into a rectangular grid

consisting ofL pixels along the crossrange and downrange. Let ssi(l)
and smi (l) denote weighted indicator functions representing the pth

stationary and the qth moving target reflectivities, respectively. The

functions ssi(l) and smi (l) are defined as

ssi(l) =

{

σp, τn,l = τn,p,

0, τn,l 6= τn,p,
(5)

smi (l) =

{

σi
q, τn,l = τn,q,

0, τn,l 6= τn,q.
(6)

Eqs. (5) and (6) imply that the value of the lth pixel is nonzero if

it includes either the pth stationary or the qth moving target. Here,

τn,l is the focusing delay between the nth antenna and the lth pixel.

From Eqs. (3) and (4), we can rearrange the stationary target sig-

nal zsi,n = [zsi (1, n), . . . , z
s
i (M,n)]T and the moving target return

zmi,n = [zmi (1, n), . . . , zmi (M,n)]T for M frequencies. Thus, the

signal model can be expressed

z
s
i,n = Ψn s

s
i, z

m
i,n = Ψn s

m
i . (7)

Here, Ψn is an M × L matrix with the (m, l)th entry given by

ψn(m, l) = exp(−j2πfmτn,l), ssi = [ssi(1), . . . , s
s
i(L)]

T , and

smi = [smi (1), . . . , smi (L)]T . Stacking measurements for N anten-

nas zsi=[(z
s
i,1)

T , . . . , (zsi,N )T ]T , and zmi =[(zmi,1)
T , . . . , (zmi,N )T ]T ,

we can express

z
s
i = Ψ s

s
i, z

m
i = Ψ s

m
i , (8)

where Ψ=[ΨT
1 , . . . ,Ψ

T
N ]T . It follows from (1) and (8) that

zi = z
w
i +Ψ s

s
i +Ψ s

m
i + υi. (9)

For MTI, CD can be applied to the successive datasets {zi} to

remove stationary components. Let z̄i denote a difference vector

between zi+1 and zi, for i = 1 . . . , I − 1. From (9), we have

z̄i = zi+1 − zi = Ψ s̄i + ῡi, (10)

where s̄i = smi+1 − smi , and ῡi = υi+1 − υi. Here, the stationary

components, zwi and Ψssi , are assumed to be identical between con-

secutive intervals, and hence they are removed. The resultant vector

z̄i is used to reconstruct s̄i, which represents target movements from

the ith to (i + 1)th intervals. Exploiting sparsity of s̄i, the moving

target image can be obtained by solving the following optimization

problem,

min
s̄i

‖s̄i‖1 subject to ‖z̄i −Ψ s̄i‖
2
2 ≤ ǫ, (11)

where ǫ is a noise bound. An efficient approach considers solving

this problem in the Lagrangian form:

s̄i = argmin
s̄i

1

2
‖z̄i −Ψ s̄i‖

2
2 + λ ‖s̄i‖1, (12)

where λ is a positive parameter used to trade off between the LS and

the ℓ1 penalty terms. Convex analysis theory proves that Problems

(11) and (12) are equivalent [27], provided that ǫ and λ obey certain

relationships.

It is worth noting that CD mitigates background clutter and en-

ables a sparse image of moving indoor targets to be reconstructed

[19, 20, 26]. However, this CD-based model is greedy in that it re-

moves also stationary targets. Furthermore, it is evident from (12)

that the combination of CD and CS processes the ith dataset z̄i to

recover the ith interval image independently, employing only ℓ1 reg-

ularizer. To overcome these issues, this paper introduces an opti-

mization model that captures wall clutter and indicates stationary

and moving targets simultaneously.

3. LOW-RANK AND SPARSE REGULARIZED LS MODEL

The proposed optimization model is described in the next subsec-

tion, followed by an iterative solver developed based on the proximal

gradient (PG) technique in Subsection 3.2.

3.1. Nuclear-norm and ℓ1-norm Regularized LS Problem

Let Zi = [zi(m,n)], Z
w
i = [zwi (m,n)], Z

s
i = [zsi (m,n)], Z

m
i =

[zmi (m,n)], and Υi = [υi(m,n)] denote the M ×N matrices con-

taining, respectively, the radar signals, the wall reflections, stationary

target returns, moving target signals, and the noise received for all

M frequencies by all N antennas at the ith interval. Equation (1)

can be rewritten in a matrix form as

Zi = Z
w
i + Z

s
i + Z

m
i +Υi. (13)

In a CS scenario, only a reduced subset of K measurements (K ≪
M × N ) is collected at each interval. Let Φ ∈ R

K×MN denote

a sensing matrix in which each row has only one non-zero element

(equal to 1) indicating the selected frequency for a particular an-

tenna. The relation between the compressed measurement vector

yi ∈ C
K and the full matrix Zi can be expressed as

yi=Φ vec(Zi)=Φ vec(Zw
i +Z

s
i+Z

m
i +Υi), (14)

where vec(Zi) denotes the vectorization operator stacking the

columns of Zi into a composite column vector. Note that Zi can be
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obtained from yi as Zi = mat(Φ† yi), where mat denotes the op-

erator reshaping a column vector of MN elements into an M ×N
matrix, and † denotes the pseudo-inverse operator. Exploiting the

relation between the target measurements and the image given in

(8), it follows from Eq. (14) that

yi = Φ [vec(Zw
i ) +Ψ si + vec(Υi)] , (15)

where si = ssi + smi . This implies that si represents both stationary

and moving targets present at the ith interval.

Now, we arrange all the measurement sets along the I intervals

into a matrix Y = [y1, . . . ,yI ], and the wall reflections into a ma-

trix Zw = [Zw
1 , . . . ,Z

w
I ], we can obtain the image of both stationary

and moving targets S = [s1, . . . , sI ] by solving the following opti-

mization problem:

min
Zw,S

‖Zw‖∗ + λ ‖S‖1

subject to ‖Y − [A(Zw) +ΦΨS]‖2F ≤ ǫ.
(16)

Here, ‖Zw‖∗ denotes the nuclear-norm defined as the sum of the

singular values of the matrix, ‖Zw‖∗ =
∑J

j=1 σj(Z
w) with σj(Z

w)
being the jth largest singular value of matrix Zw of rank at most J ,

‖S‖1 is the ℓ1-norm of matrix S computed as the sum of the absolute

entries ‖S‖1 =
∑

l

∑

i |S(l, i)|, λ is the regularization parameter

reflecting a trade-off between the low-rank and sparse terms, ‖ · ‖F
denotes the Frobenius norm, ǫ is a noise bound, and the operator

A(Zw) is defined as A(Zw) = [Φ vec(Zw
1 ), . . . ,Φ vec(Zw

L)]. To

solve Problem (16) efficiently, we cast it into the Lagrangian form:

min
Zw,S

f(Zw,S) =
1

2
‖Y − [A(Zw) +ΦΨS]‖2F

+ γ(‖Zw‖∗ + λ ‖S‖1), (17)

where γ is a positive parameter. Now the task is to minimize

f(Zw,S) to solve for the wall clutter Zw and target image S jointly.

3.2. Iterative Proximal Gradient Algorithm

This subsection presents an iterative algorithm based on PG tech-

nique [28–30] to solve Problem (17). PG considers solving the prob-

lem with an objective function:

min
x

f(x) = g(x) + λ h(x), (18)

where g(x) is convex, differentiable, and smooth, e.g., the quadratic

term in (17), and h(x) is convex but not necessary smooth, e.g., the

sum of the nuclear and ℓ1 norms in (17). Satisfying these conditions,

Problem (18) is solved efficiently using an iterative technique. Let

xk denote an estimate of the solution at the k-th iteration. Then, the

next estimate of the minimizer is obtained by solving:

xk+1 = argmin
x

1

2
‖ak − x‖22 + λα h(x), (19)

where the auxiliary variable ak is defined as

ak = xk − α∇g(xk). (20)

Here, ∇g(xk) denotes the gradient of g(x) evaluated at the current

estimate xk. When∇g is a Lipschitz continuous function with con-

stant C, this method converges if α ∈ (0, 1/C].
We use the PG scheme to solve Problem (17). Minimizing

f(Zw,S) generates a sequence of estimates for the wall com-

ponent Zw and target image S. Let {Zw
k ,Sk} denote an esti-

mate at the kth iteration. Defining an adjoint operator A∗(Y)

as A∗(Y) = [mat(Φ† y1), . . . ,mat(Φ† yI)], the next estimate

{Zw
k+1,Sk+1} is obtained by solving

(Zw
k+1,Sk+1) = arg min

Zw,S

1

2
‖Zk − Z

w −A∗(ΦΨS)‖2F

+ αγ‖Zw‖∗ + α γ λ ‖S‖1,

(21)

where Zk, playing the role of ak in (20), is evaluated by

Zk = Z
w
k +A

∗(ΦΨSk)−αA
∗(A(Zw

k )+ΦΨSk−Y). (22)

Since the variables Zw and S are separable, Problem (21) is mini-

mized by solving two subproblems:

Z
w
k+1 = argmin

Zw

1

2
‖Zk − Z

w −A∗(ΦΨSk)‖
2
F + αγ‖Zw‖∗, (23)

Sk+1 = argmin
S

1

2
‖Zk − Z

w
k+1 −A

∗(ΦΨS)‖2F + αγλ‖S‖1. (24)

The task now is to solve Subproblems (23) and (24). The

nuclear-norm regularized LS problem in (23) can be solved ef-

ficiently using the singular value soft-thresholding (SVT) tech-

nique [31]. The solution is given by applying SVT to the input

matrix [Zk −A
∗(ΦΨSk)]:

Z
w
k+1 = Sαγ(Zk −A

∗(ΦΨSk)). (25)

Given the singular value decomposition of Z as Z = UΛVH , SVT

operator Sτ (Z) is defined by Sτ (Z) = U Tτ (Λ) VH . Here the

soft-thresholding operator Tτ (x) is computed as

Tτ (x) = sgn(x)max(|x| − τ, 0) =
x

|x|
max(|x| − τ, 0). (26)

Note that for vectors or matrices, the soft-thresholding operator

Tτ (·) is applied to each element (entrywise).

The ℓ1-norm penalized LS problem in (24) can be handled using

the generic PG decomposition in Eqs. (19) and (20):

Sk+1 = argmin
S

1

2
‖X− S‖2F + βαγλ ‖S‖1 , (27)

where the auxiliary variable X is computed as

X = Sk − βΨ
H [ΨSk − (Zk − Z

w
k+1)] . (28)

Here, the parameter β satisfies β ∈ (0, 1/||Ψ||22] for convergence.

The solution to Problem (27) is given by applying the shrinkage op-

erator T (·) in (26) to the auxiliary variable X in (28):

Sk+1 = Tβαγλ(X). (29)

Table 1 provides the iterative steps to solve Problem (17). The

input includes data matrix Y, parameters α, β, γ, λ, and a tolerance

tol. The parameters α and β are gradient stepsizes; they are set to

the largest possible values for fast convergence, whereas the param-

eters γ and λ are problem-dependent and need to be tuned appro-

priately. The algorithm performs two major tasks: wall-component

estimation (Step 3) and target image reconstruction (Step 4). The

algorithm stops when it converges to a local optimum. Here, it ter-

minates if the relative change of the objective function is negligible

(see Step 5). Note that the ith column in S represents the targets

present at the ith interval. To monitor the moving target trajectory,

we can combine all I images and form a composite map s as

s(l) = max
i
|si(l)|, for i = 1, . . . , I. (30)
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Table 1. Algorithm 1: Iterative estimations of wall clutter, stationary

and moving indoor target images.

1) Initialize Zw
0 ← A

∗(Y), S0 ← 0, k ← 0.

2) Perform gradient decomposition using (22):

Zk ← Zw
k +A

∗(ΦΨSk)−αA
∗(A(Zw

k )+ΦΨSk−Y).

3) Estimate wall component using (25):

Zw
k+1 ← Sαγ(Zk −A

∗(ΦΨSk)).

4) Estimate target images using (28) and (29):

X← Sk − βΨ
H [ΨSk − (Zk − Zw

k+1)],

Sk+1 ← Tβαγλ(X).

5) Evaluate the cost function f(Zw
k+1,Sk+1) using (17).

If
|f(Zw

k+1
,Sk+1)−f(Zw

k ,Sk)|

|f(Zw
k
,Sk)|

< tol, then terminate algorithm,

otherwise increment k ← k + 1, and go back to Step 2.

4. EXPERIMENTAL RESULTS

The proposed model was evaluated using real radar datasets col-

lected from the Imaging Laboratory at the University of Wollongong,

NSW, Australia. A synthetic aperture radar (SAR) system was setup

to image a scene containing a 0.16 m thick wooden wall, a 0.2 m

triangular plate trihedral, and a 0.2 m square plate dihedral. During

data acquisition, the trihedral target remains stationary and the di-

hedral target moves along a trajectory indicated by Pos. 1 to Pos. 3,

as shown in Fig. 1. The SAR transceives a stepped-frequency signal

comprising 801 frequencies, equispaced over 2 GHz bandwidth cen-

tered at 2.0 GHz with 2.5 MHz frequency step. The aperture array

has 61 elements, with an inter-element spacing of 0.01 m. The radar

system was placed at a standoff distance of 1.0 m from the wall. Data

were collected for three intervals, starting with the dihedral target at

Pos. 1 and ending with the dihedral target at Pos. 3.
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Fig. 1. Layout of the TWRI scene comprising both stationary and

moving targets.

The proposed iterative algorithm requires a set of input param-

eters, which were chosen as follows. The gradient stepsize parame-

ters α and β were set to α = 1/‖Φ‖22 and β = 1/||Ψ||22 for acceler-

ated convergence. The regularization parameters γ and λ need to be

tuned appropriately. Here in the experiments, they were chosen as

γ = 10−1‖A∗(Y)‖2 and λ = 0.25max{‖(ΦΨ)Hyi‖∞}
I
i=1. The

tolerance was set to tol=10−4.

 !"  #"

 $"  %"

Fig. 2. Target images reconstructed by different methods with 50%

frequencies and 50% antennas: (a) proposed method using the first

and second datasets, (b) proposed method using the first, second,

and third datasets, (c) CD & ℓ1 min. applied to the first and sec-

ond datasets, and (d) CD & ℓ1 min. applied to the second and third

datasets. The stationary target is indicated by a solid circle, and the

trajectory of moving target is indicated by dashed circles.

Clutter mitigation and target image reconstruction were per-

formed using reduced datasets generated by randomly selecting

50% (400 out of 801) of the total frequencies at half the antenna lo-

cations (31 out of 61) selected randomly. Fig. 2 shows the composite

target images s obtained by progressively reconstructing target im-

ages. Fig. 2(a) shows the target image formed by the proposed

model using the first and second interval datasets. The stationary

and moving targets are localized at their positions. Fig. 2(b) presents

the target image formed by the proposed method with three datasets.

The stationary indoor target is detected and the moving target is

indicated along its trajectory. Furthermore, we notice that when

more datasets are combined, the quality of clutter mitigation and

target reconstruction is enhanced. The existing two-stage approach,

CD followed by ℓ1 minimization [19, 20, 26] was implemented on

the same datasets. Fig. 2(c) shows target image formed after sub-

tracting the first dataset from the second dataset. The moving target

is localized at Pos. 1 and 2, but the stationary target is suppressed.

Applying CD to the second and third datasets can detect the moving

target, but CD again removes the stationary target, as demonstrated

in Fig. 2(d).

5. CONCLUSION

This paper presented a low-rank and sparse penalized LS optimiza-

tion model for solving the problem of clutter mitigation and image

reconstruction of stationary and moving indoor targets in compres-

sive TWRI. Through experimental validation, we find that the pro-

posed model segregates wall clutter from target reflections well and

enables the detection of both stationary and moving targets, even

with reduced measurements. Furthermore, by processing several

datasets progressively, the proposed model enhances the level of

clutter mitigation and target image reconstruction.
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