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ABSTRACT

Hyperspectral images (HSIs) clustering problem is a challenge
and valuable task due to its inherent complexity and abundant spec-
tral information. Sparse subspace clustering (SSC) and SSC-based
methods are widely used in this problem and demonstrate excellen-
t performance. However, considering that HSIs are usually of high
dimension, these methods have expensive computing complexity be-
cause of the usage of SSC. To solve this problem, we propose a
novel approach called SuperPixel and Angle-based HyperSpectral
Image Clustering (SPAHSIC). It first extracts the local spectral and
spatial information between pixels by superpixel segmentation, and
then applies spectral clustering on the similarity matrix built based
on subspace principal angles. We implement experiments on real
datasets and get a high accuracy, which indicates the effectiveness
of our algorithm.

Index Terms— Hyperspectral images (HSIs), superpixel, sub-
space, principal angle, spectral clustering

1. INTRODUCTION

Hyperspectral images (HSIs) refer to the high-dimensional images
acquired by sampling the solar reflection of earth surface. It collects
a large amount of very narrow spectral spectrum, including the en-
tire visible, near-IR, mid-IR, and thermal-IR, and thus contains much
more information than traditional images [1]. HSIs have important
applications in many fields, including mineral exploration [2], preci-
sion agriculture [3], and many others.

A fundamental problem in these applications, called HSI classi-
fication, is to separate pixels in HSI into different groups according
to different land covers. According to whether examples are labeled,
existing algorithms are generally divided into two categories, i.e.,
supervised algorithms and unsupervised algorithms. In real-world s-
cenarios, label information required by supervised algorithms is un-
likely or very expensive to be available. Therefore, applying HSI
classification without label information, known as HSI clustering, is
a well-motivated problem and has received much attention.

Some traditional clustering algorithms are directly applied to
HSI clustering, including K-means [4], fuzzy c-means (FCM) [5],
the density-based spatial clustering of applications with noise (DB-
SCAN) [6]. Due to limited discriminative information in spectral do-
main, most of these algorithms behave not so-well, especially when
dealing with complex ground objects with a large diversity. In recent
years, the subspace model for HSI is proposed, which assumes that
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pixels of the same land-cover class lie in the same subspace. Based
on this model, SSC and SSC-based algorithms are introduced and
demonstrate the current state-of-art performance [7, 8]. The high ac-
curacy of many methods, such as spectral-spatial SSC (SSC-S) [9],
joint sparsity based SSC (JSSC) [10] and spectral-spatial low-rank
subspace clustering (SS-LRSC) [11], is achieved by utilizing spatial
information under SSC model. However, because SSC requires op-
timizing a self-representation matrix, it brings high computing com-
plexity and leads to expensive time cost.

In order to reduce the complexity of HSI clustering, we propose
a new algorithm called SuperPixel and Angle-based HyperSpectral
Image Clustering (SPAHSIC for short). SPAHSIC includes two step-
s. In the first step, raw pixels in the original HSI are divided in to a set
of multiple superpixels based on local spatial and spectral informa-
tion. In the second step, each superpixel is treated as a subspace and
a similarity matrix is built based on the principal angles. Then spec-
tral clustering is adopted to incorporate the global information and
obtain a clustering result. The proposed algorithm does not need to
calculate self-representation matrix and has much lower computing
complexity. Besides, experiments implemented on two real datasets
indicate that SPAHSIC achieves higher accuracy compared with the
existing methods 1.

2. BACKGROUND

2.1. Superpixel Segmentation and SLIC Algorithm

Superpixel segmentation is the process of partitioning an image into
non-overlapping multiple sub-regions, {Pi}i=1,2,··· ,K . Each super-
pixel contains the pixels with similar spectral information and spatial
information. Many algorithms were proposed to solve this problem
for traditional RGB images, such as watershed superpixel [12], en-
tropy rate superpixel segmentation [13], and simple linear iterative
clustering algorithms (SLIC) [14]. Among them, SLIC is popular
for its segmentation performance and efficiency in computation and
storage. Besides, it is straightforward to extend to supervoxel seg-
mentation. We refer SLIC to design the superpixel segmentation part
in our algorithm.

An algorithm parameter of SLIC is the desired number of su-
perpixels, denoted as K̂. SLIC works in the following way. It first
initializes superpixel centers {Ci}i=1,2,··· ,K̂ as grid points with uni-
form interval S = (MN/K̂)1/2, where M and N denote the length
and width of the image, respectively. To avoid choosing edge pixels
or noisy pixels as the center, SLIC corrects Ci by replacing it with a
neighbor pixel of the lowest gradient. The gradient is defined as

G(p, q) = ‖I(p+ 1, q)− I(p− 1, q)‖+ ‖I(p, q + 1)− I(p, q − 1)‖ ,
1The supplementary downloadable material, including MATLAB codes-
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where I(p, q) denotes the (p, q)-th pixel of the processed image.
Next for each pixel, we calcualte the distance between it and any
cluster center whose 2S× 2S neighbor area overlaps this pixel. The
distance is defined as the sum of the color distance and the spatial
distance normalized by the grid interval S.

D̂(pi, Cj) = dO(pi, Cj) + (m/S)dA(pi, Cj),

where

dA(pi, Cj) =
√

(xi − x̄j)2 + (yi − ȳj)2,

dO(pi, Cj) =
√

(li − l̄j)2 + (ai − āj)2 + (bi − b̄j)2,

and (xi, yi), (x̄j , ȳj) denotes the location of the i-th pixel and j-th
cluster center, respectively. (li, ai, bi), (l̄j , āj , b̄j) denotes the col-
or represented in the CIELAB color space of the i-th pixel and j-th
center, respectively. Then pixel i is associated to the nearest clus-
ter center. After all pixels are associated, the centers are adjusted to
be the mean vector of all the pixels belonging to the cluster. The l1
norm is used to compute a residual error E between the new cluster
center locations and previous cluster center locations. The assign-
ment and adjustment steps can be repeated iteratively until the error
E is smaller than some threshold τ . Pixels associated to the same
center belong to the same superpixel.

2.2. Principal Angles

The principal angles (or canonical angles) between two subspaces
provide the best way to characterize the relative subspace relation-
ship [15]. Its definition is as below. Compared with Euclidean dis-
tance, principal angles ignore the influence of amplitude and reflect
the similarity between two subspaces from a more accurate angle.
We use it to measure the spectral distance between two pixels and
build the similarity matrix of superpixels.

Definition 1. The principle angles {θk}k=1,2,··· ,r between two
subspaces S1 and S2 of dimensions r, are recursively defined as

cos θk = max
x1∈S1

max
x2∈S2

xT
1 x

‖x1‖‖x2‖
=

xT
1kx2k

‖x1k‖‖x2k‖
,

with the orthogonality constraints xT
i xij = 0, j = 1, · · · , k − 1,

i = 1, 2.

An alternative way of calculating principal angles is to use the
singular value decomposition.

Lemma 1. [16] Assume U1, U2 is orthonormal basis of r-
dimensional subspace S1, S2, respectively. Denote λk as the k-th
singular value of UT

1 U2 and θk as the k-th principal angle between
S1 and S2. Then cos θk = λk for k = 1, · · · , r.

3. PROPOSED ALGORITHM

Denote H ∈ RM×N×L a hyperspectral image, where M , N repre-
sents the height and width of the data respectively and L denotes the
number of bands. Denote hm,n ∈ RL as the spectral signature of
the (m,n)-th pixel with length L. The proposed SPAHSIC includes
two steps. Step 1 is the superpixel segmentation with an angle-based
distance, which uses the high spatial correlation between pixel val-
ues, which partitions adjacent pixels lying in the same subspace into
a superpixel. Step 2 consists of computing the affinity matrix of su-
perpixels and clustering them, which merges superpixels lying in the
same subspace into one class.

O

Fig. 1. Principal angle between the column spaces spanned by hm,n

and h̄j .

3.1. Angle-based Superpixel Segmentation

In this step, we want to partition HSI into many superpixels, where
pixels in the same superpixel lie in the same subspace. To this end,
we improve SLIC from two aspects. In order to take advantage of the
subspace property of hyperspectral images, our first improvement
is to introduce a new measure dE to evaluate the spectral distance
between two pixels. dE is defined as the principal angle between the
column spaces spanned by hm,n and h̄j , as shown in Fig. 1.

dE(hm,n, h̄j) = sin θmn,j =
√

1− (hT
m,nh̄j)2/(‖hm,n‖2‖h̄j‖2),

where h̄j denotes the spectral signature of the j-th cluster center.
The motivation of the above definition is that the intensity of the
spectral information mainly depends on the transmission energy loss
and is thus meaningless for superpixel segmentation. The distance
between the (m,n)-th superpixel and the cluster center is defined
as D(hm,n, h̄j) = dE(hm,n, h̄j) + (m/S)dA(hm,n, h̄j), where
dA(·, ·) and dE(·, ·) denotes, respectively, the measure on spAtial
distance and that on spEctral distance.

Another contribution is the calculation of gradient. To further
reduce the effects of noise, we define the gradient of pixels as fol-
lows:

G(p, q) = ‖h(p, q)− h(p+ 1, q)‖+ ‖h(p, q)− h(p− 1, q)‖
+ ‖h(p, q)− h(p, q + 1)‖+ ‖h(p, q)− h(p, q − 1)‖ .

Besides, we count the numberE of pixels that their label change
in successive iterations and set threshold τ as 5. If E is smaller than
τ , we jump out of the loop. Finally, to avoid the number of pixels
of some superpixel is too small, we merge such superpixels to their
neighborhoods by changing their label to the nearby superpixels’ la-
bels. Then, we calculate the current superpixel number K.

The influence of desired number of superpixels K̂ and scaling
factor m is discussed in Section 4.

3.2. Superpixel Clustering

Assume we get K superpixels P1, · · · , PK in step 1 and each su-
perpixel lies in a subspace. We first calculate the first r principal
components {Uj ∈ RL×r}j=1,2,··· ,K via PCA for each superpixel.
Then the distance between two superpixels can be defined as

d2(Pj , Pk) =

r∑
i=1

sin2 φi,

where φi denotes the i-th principal angle between subspaces spanned
by the columns of Uj and Uk, as shown in Fig. 2. The calcu-
lation of principal angles can be completed according to Lemma
1. The similarity matrix A ∈ RK×K = (ajk)jk, where ajk =
exp

(
−D2(Pj , Pk)/

(
2σ2
))

, and σ is the variance of the Gaussian
kernel function. In this work, 2σ2 is set as 7. Finally, we apply
the spectral clustering to the similarity matrix A, and assign each
pixel the label the same as that of the superpixel it belongs to. The
SPAHSIC algorithm is summarized in Algorithm 1.
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Fig. 2. Principal angles between two superpixels Pj and Pk, where
only the first and the last angles are plotted.

3.3. Analysis of computational complexity

In this section, we analyze the computational complexity of two
steps separately. For step 1, the computational complexity of SLIC
for normal images is O(MN) in each iteration [14]. Unlike normal
SLIC for RGB images with just three spectral channels, SPAHSIC is
required to compute D(hm,n, h̄j) with all spectral. Thus, the com-
putational complexity of step 1 is O(LMN) in each iteration.

In step 2, the computational complexity of applying PCA to the
i-th superpixel is O(rLni), where ni is the number of pixels in su-
perpixel Pi. As a result, the computational complexity for all super-
pixels is

∑t
i=1O(rLni) = O(rLMN). Based on Ui, the compu-

tational complexity for calculating the affinity matrix A and spectral
clustering is O(rLK2) and O(K3), respectively, where K denotes
the number of superpixels. Then the overall computational complex-
ity is O(rLMN) + O(rLK2) + O(K3). Generally, the intrinsic
dimension of each superpixel is low, which indicates that r is small.
Considering that the distribution of the same land cover is usual-
ly concentrated, superpixel number K is also small compared with
MN . As a result, the overall computational complexity of step 2
can be written as O(rLMN).

4. PARAMETER SELECTION

Parameter K̂ represents the desired number of superpixels. Consid-
ering that pixels in the same superpixel should belong to the same
class, K should be larger than the number of classes. If K is small,
pixels from different classes will be classified to the same superpix-
el, which leads to incorrect orthonormal bases Ui. On the other side,
if K̂ is too large, it is of high probability that some superpixels on-
ly contain few pixels, which increases the estimation error of Ui .
Generally, we take K̂ slightly larger than the three times of the class
numbers.

Scaling factor m is the weight of dA in the definition of D. It
controls the compactness of a superpixel. The greater the value of
m, the more spatial proximity is emphasized. Its selection is related
to the geometric resolution of the images. When the geometric res-
olution is large, the real distance of each pixel center is far, spatial
information should be used less, i.e., m is smaller, and vice versa.
For example, if the resolution is 20 meters, m can be taken as 0.08,
while if resolution is 1.3 meters, m is 0.06.

Subspace dimension r is determined by the energy distribution
on the principal components of the superpixel. For each superpix-
el, we can calculate the ratio of the energy of the first r principal
components with respect to the whole energy, and get its distribu-
tion denoted as hr(µ), µ ∈ [0, 1].As r increases, the energy of the
first r singular values increases and hr(µ) changes. r is taken as the
minimum value when the correlation coefficient between hr(µ) and
hr+1(µ) almost does not change.

Algorithm 1 SuperPixel and Angle-based HyperSpectral Image
Clustering (SPAHSIC)

Input: HSI H ∈ RM×N×L, desired number of superpixels K̂,
scaling factor m, subspace dimension r.

Output: Label matrix of HSI clustering Hlabel.
1: Initialize centers of clusters {Ci}i=1,2,··· ,K̂ by sampling the da-

ta at regular step S =

√
MN/K̂;

2: Compute the gradient of neighborhoods of the centers Ci and
move the centers to the lowest gradient points;

3: repeat
4: for each pixel do
5: According to the angle-based distance, assign each pixel

to the best matched center;
6: end for
7: Update the cluster centers as the mean of the pixels of the

same label;
8: Calculate residual error E;
9: until E ≤ τ ;

10: Search for small superpixels with fewer than r pixels and merge
them into their nearby big superpixels.

11: Calculate the current numberK of superpixels and the orthonor-
mal bases U of each superpixel with Subspace dimension r;

12: Compute the affinity matrix of all superpixels A by principal
angles;

13: Applying spectral clustering to the affinity matrix A to get the
final result Hlabel;

5. EXPERIMENTAL RESULTS

Like previous work [7], [10] and [11], we apply SPAHSIC to two
real datasets: 1) Indian Pines dataset and 2) the University of Pavia
dataset.

We choose two widely used clustering methods K-means [4],
FCM [5], and the state-of-the-art methods vanilla SSC [8], SSC-S
[9] and JSSC [10] for comparison. Among them, K-means and FCM
measure the distance between pixels by Euclidean distances without
utilizing subspace property. Vanilla SSC produces a representation
coefficient matrix by ADMM and applies it to spectral clustering to
get the result. It focuses on subspace property but ignores the spa-
tial information. To add the spatial information in clustering, SSC-S
introduces the mean constraint of the representation coefficients and
JSSC enforces pixels within a local region having similar representa-
tion coefficients. However, these three methods have high computing
complexity compared to SPAHSIC.

Two common performance measurements, overall accuracy
(OA) and Kappa coefficient κ, which measures the agreement be-
tween the predicted clustering results and the ground truths, are used
for quantitative assessment of the clustering performances. We run
all methods on the same computer and record the time they need to
complete clustering.

5.1. AVIRIS DataSet: Indian Pines Image

The first experiment is conducted on part of Indian Pines dataset,
which is acquired by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensors from the Northwestern Indiana Indian
Pines test site in June 1992 [17]. The size is 145 × 145 pixels with
a 20m geometric resolution. We remove 20 water absorption and
noisy bands (104-108, 150-163, 220) from the original 220 bands,
and use the leaving 200 bands for experiment. A typical subimage
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Soybeans-notill Soybeans-minitill

Unlabel

Fig. 3. Cluster maps of different methods with the Indian Pines im-
age: (a) False-color image (RGB 45, 30, 20), (b) Ground truth, (c)
K-means, (d) FCM, (e) SSC, (f) SPAHSIC.

Table 1. Quantitative evaluation of the different clustering algo-
rithms for the Indian Pines image

Class K-means FCM SSC SSC-S JSSC SPAHSIC
Grass 100.0 54.5 100.0 100.0 100.0 99.9

Corn-notill 50.5 70.7 47.8 58.1 74.0 83.6
Soybeans-

notill 65.4 0.0 75.3 68.1 86.2 88.3

Soybeans-
mintill 41.9 55.7 54.9 64.8 87.8 84.6

OA 57.4 49.7 64.2 68.1 86.4 87.5
κ 0.43 0.28 0.51 0.55 0.81 0.82

Time (s) 2.18 6.12 363.48 - - 5.11

of the size 85 × 70 is used, which contains four main classes. The
false color and ground truth are showed in Fig. 3.

Based on our discussion in Section 4, we choose K̂ = 20,
m = 0.06, r = 3. the quantitative evaluations of the clustering
results including OA and κ are provided in Table 1. Particularly,
for methods SSC-S and JSSC, we copy the result of [9] and [10], to
ensure the best parameters being chosen. The results demonstrate
that SPAHSIC achieves the best OA and κ among all methods. The
cluster maps of different methods are shown in Fig. 3. It can be ob-
served that SPAHSIC provides a more smoother classification. This
is because the superpixel segmentation step enforces the spatial cor-
relation between pixels. Running time is listed in the last line of the
table. Time for SSC-S and JSSC is not recorded. However, consid-
ering that they are modified under SSC model, it has similar com-
putational complexity as SSC-S, which is very high. Only K-means
runs faster than SPAHSIC on this dataset, but it has much lower
accuracy. Moreover, the computational complexity of K-means is
O(LMNK) in each iteration. As the number of pixels increases,
K-means takes longer time than SPAHSIC, which is verified in the
next experiment.

5.2. ROSIS Urban DataSet: University of Pavia, Italy

We use part of University of Pavia dataset from the Reflective Optic-
s System Imaging Spectrometer (ROSIS) sensor in this experiment.
The size of original dataset is 610×340 with a 1.3m geometric reso-

(a) (b) (c)

(d) (e) (f)

Shadows

Meadows

Metal

Bitumen UnlabelAsphalt Trees

Bare Soil Brick

Fig. 4. Cluster maps of the different methods with the University of
Pavia image: (a) False-color image (RGB 99, 67, 30), (b) Ground
truth, (c) K-means, (d) FCM, (e)SSC, (f) SPAHSIC.

Table 2. Quantitative evaluation of the different clustering algo-
rithms for the University of Pavia Image

Class K-means FCM SSC SSC-S JSSC SPAHSIC
Bitumen 0.0 0.2 21.7 0.0 99.1 100.0
Asphalt 59.9 86.6 38.2 95.9 11.8 98.6
Trees 81.0 60.3 69.8 100.0 98.4 49.2

Meadows 63.0 61.4 96.2 0.0 99.4 99.9
Bare soil 43.8 40.6 49.6 25.8 68.5 82.5

Metal 100.0 100.0 0.0 98.6 99.8 99.8
Brick 0.0 0.0 0.0 52.3 0.0 0.0

Shadows 0.0 100.0 0.0 98.6 89.0 39.6
OA 51.5 58.5 46.0 52.0 79.35 87.5
κ 0.41 0.50 0.27 0.44 0.74 0.84

Time (s) 37.31 19.11 1.22E4 - - 15.16

lution and the data has 103 spectral channels [9]. A typical subimage
of size 200× 100 is chosen, which contains eight main classes. The
false color and ground truth are showed in Fig. 4.

Based on our discussion, the geometric resolution of Pavia U-
niversity is smaller than the Indian Pines’s, so m is chosen as 0.08.
K̂ = 25, r = 4. Similarly, we copy the result of SSC-S and JSSC
in [9] and [10], to ensure the best parameters being chosen. The run-
ning time for these two methods is not recorded. The results of this
experiment are shown in Table 2 and the clustering maps are shown
in Fig. 4. According to the results, SPAHSIC has the best perfor-
mance and consumes the least time. K-means is not as efficient as
SPAHSIC as the dimension of HSI increases.

6. CONCLUSION

We have proposed a novel algorithm for HSI clustering called S-
PAHSIC. It first divides HSI into superpixels that are treated as sub-
spaces. Next, clustering is conducted on those subspaces based on
principal angels. Superpixel segmentation provides local spatial in-
formation for clustering, and the latter clustering incorporates global
information. Meanwhile, conducting clustering based on subspace
also frees us from the high computational complexity of SSC. Two
experiments on real datasets show the outstanding performance of
SPAHSIC in both accuracy and computing efficiency.
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