
ADAPTIVE BRIGHTNESS LEARNING FOR ACTIVE OBJECT RECOGNITION

Nuo Xu, Chunlei Huo, Chunhong Pan

1. NLPR, Institute of Automation, Chinese Academy of Sciences
2. University of Chinese Academy of Sciences

ABSTRACT

State-of-the-art object detection methods based on deep learn-
ing achieved promising performances in recent years. How-
ever, the performances are limited by the passive nature of
the traditional object recognition framework in ignoring the
relationship between imaging configuration and recognition
performance as well as the importance of recognition perfor-
mance feedback for improving image quality. To address the
above limitations, an active object recognition method based
on reinforcement learning is proposed in this paper by taking
adaptive brightness adjustment as an example. Progressive
brightness adjustment strategy is learned by maximizing
recognition performance on reference high-quality training
samples. With the help of active object recognition and
brightness adjustment strategy, low-quality images can be
converted into high-quality images, and overall performances
are improved without retraining the detector.

Index Terms— object recognition, deep reinforcemen-
t learning, deep learning, remote sensing images

1. INTRODUCTION

Remote sensing image object recognition is to detect object-
s from remote sensing images and identify their types. It is
challenging due to the difficulties in feature extraction, posi-
tion regression and object classification. In recent years, deep
learning provides great potentials for addressing the difficul-
ties, and many promising approaches have been presented in
literature. Generally, deep learning based approaches can be
divided into the following two categories, two-stage method-
s(e.g., Faster RCNN [1, 2, 3] and R-FCN [4]) and one-stage
methods(YOLO [5, 6, 7], SSD [8, 9] and RetinaNet [10]).
The success of deep learning for remote sensing image object
recognition is mainly contributed to the multi-layer nonlinear
networks for learning representative features and the end-to-
end mapping between images and their semantic labels.

Despite the effectiveness of deep learning, traditional ob-
ject recognition approaches are limited due to the passive na-
ture. Firstly, in the in-orbit imaging procedure, images are ac-
quired with a focus on visual inspection performance, and the
requirements specific to object recognition are not being tak-
en into consideration. Secondly, images are directly used for

training or testing without proper image quality evaluation,
or images are simply evaluated and reprocessed manually by
visual inspection. In fact, requirements on imaging configura-
tion for visual inspection and object recognition are different,
and this gap will impact the object recognition performance.
In other words, active object recognition is rarely considered
in the in-orbit imaging procedure or the subsequent objec-
t recognition step.

To overcome the above limitations, an active object recog-
nition approach is proposed based on reinforcement learning,
and the role of reinforcement learning is to optimize imaging
conditions for improving object recognition performance. It
is worth noting that the application of reinforcement learn-
ing for image processing is a new topic and the proposed ap-
proach is different from related work[11, 12, 13]. Specifi-
cally, Caicedo[11] utilized reinforcement learning for direct
object recognition, while the proposed approach utilizes rein-
forcement learning to generate better images for active object
recognition within the traditional object recognition frame-
work. Bellver[12] suggested applying reinforcement learning
to focus attention on object candidates, but types of objects
are not being considered and imaging configurations(such as
brightness) are not changed. Most importantly, [11] and [12]
use reinforcement learning alone to locate objects, but this
paper combines deep reinforcement learning with the current
mainstream deep learning object recognition algorithm. Park
[13] suggested enhancing images by reinforcement learning
for visual inspection instead of object recognition. In short,
the proposed approach is different from related work, and the
novelty of this paper is to enhance object recognition perfor-
mance by actively improving image quality. Moreover, it is
very useful for off-line recognition and on-line imaging.

2. THE PROPOSED APPROACH

Imaging configurations are import factors that affect image
quality, among which the brightness is one of the most impor-
tant factors that hinder later object recognition performances.
Moreover, for different tasks such as visual inspection and ob-
ject recognition, the metrics used for evaluating imaging con-
figurations are different. For this reason, this paper studied
active imaging configuration learning in the context of object
recognition task by taking brightness learning as an example.
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2.1. Problem Formulation

Environment, agent, state, action and reward are key com-
ponents of reinforcement learning. Below, we describe each
component in the context of active object recognition.

Environment. The environment of this paper refers to
object detector D since the performance of action and reward
is evaluated by it. For efficiency, YOLOv3 is used in this pa-
per, but other object detectors such as SSD and Faster RCNN
could be used without problem.

Agent. The role of the agent is to learn a series of envi-
ronmental state-to-action mappings π according to the reward
provided by the environment. For the agent, the basic learning
rule is driven by the reward, i. e., if an action brings positive
returns to the environment, this action will be strengthened,
and vice versa.

State. The state S refers to the information that the agent
uses to select the action. It is the feature F extracted from the
image for agent training.

Action. The action A is defined as a global brightness ad-
justment operation, and it comes from the action space A =
{A1, A2, A3} (brighten, darken, termination), and the action
that maximizes the overall expected reward when the algo-
rithm converges is chosen by the agent at the next iteration.

Reward. Reward is provided by the environment to the
agent for evaluating the quality of the actions. In this paper,
the reward R(t) is based on the recognition performances.

R(t) = sign(r(t)− r(t− 1)) (1)

Where r = 1
2 (F +mIoU), mIoU is the average IoU of all

correct detection boxes, and F is the F-measure of the detec-
tion boxes with IoU > 0.5. By experiments, we find that the
pure usage of F indicator and mIoU does not work well. F
indicator alone results in small reward, and mIoU alone is
less robust to multiple objects.

2.2. Automatic Brightness Adjustment

Based on the above denotations, our goal is to learn a
best strategy (e.g., brightness adjustment action sequence
{Aopt(t)} ⊆ {A(t) | A(t) ∈ A , t = 0, 1, · · · , n}) to en-
hance the low-quality images and improve the recognition
performance. In this paper, DQN[14] is used as the rein-
forcement learning framework to find the optimal strategy.
Q function estimation is the most important step, and the
state-action value function Q is

Qπ(S(t), A(t)) = E(R(t)+γQπ(S(t+1), A(t+1))). (2)

Where γ is a discount factor, and the value of an action at
step t is evaluated based on the reward of this step and the
value of the next step. Considering that the state space is con-
tinuous and the approximation complexity is high, a six-layer
fully-connected neural network is used as the Q-network. The

input of Q-network is the state feature F , which consists of t-
wo parts F = (Fc, Fb), where Fc is the contextual feature
extracted by the detector D and Fb the histogram of the im-
age. In detail, Fc is the output of YOLOv3 on an image of the
Darknet-53 layer, and its dimension is 13 × 13 × 1024. By
taking the average operation along the channel dimension, Fc

is straightened into a vector of 169 dimensions. To compute
the histogram, the RGB image is converted into the HSV col-
or space, and a histogram is obtained on the component V ,
where the bin width is 4. Since the quantitative level is 256,
a 64-dimension histogram can be obtained. Finally, the two
parts are concatenated together to obtain a feature vector of
233 dimensions.

The flowchart of brightness adjustment process is shown
in Fig. 1. The main strategy learning procedure is described
as follows. At step t, an image I(t) is represented by the con-
textual feature Fc(I(t)) and the brightness feature Fb(I(t)),
and the image I(t+1) is obtained by applying an action A(t)
on I(t). Similarly, the input image I(0) is enhanced by ap-
plying a series of adjustment actions {A(t) | A(t) ∈ A , t =
0, 1, · · · , n} iteratively, where Qπ(S(t), A(t)) is the output
of Q-network with S(t) = (Fc(I(t)), Fb(I(t))).

Fig. 1. Flowchart of the proposed approach.

Within the above reinforcement learning framework, one
key problem to be solved is image brightness adjustment for
later states transformation and action implementation. In this
paper, images of different brightness levels are represented
by a robust brightness transformation and a basic brightness
image Vbase. Below, we elaborate brightness transformation
and action implementation in detail.

Brightness transformation For RGB image, its bright-
ness degree is represented by a brightness level (L) computed
on the image brightness component V in HSV color space.
Brightness level lies within the range [-1, 1], and changing
brightness level means changing the image brightness. The
negative number means that the image is dark, and the pos-
itive number means that the image is bright. The larger the
absolute value, the darker or brighter the image.

To estimate brightness level for a component V (t), a ro-
bust brightness transform is proposed(e.g., Eq. (3)).

V (t) =

{
(1 + L(t))Vbase −1 ≤ L(t) < 0
(1− L(t))Vbase + 255L(t) 0 ≤ L(t) ≤ 1

(3)
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The method of multiplying a coefficient directly by V (t−
1) is not used for obtaining V (t), the reason lies in the fact
that pixels whose gray values are beyond 255 and being trun-
cated in the brighten operation are difficult to be recovered
in the later darken operation. The relationship between the
pixel value of Vbase and the pixel value of V under different
brightness levels is shown in Fig. 2.

Fig. 2. Brightness transformation. This figure illustrates how
the pixel value of V is adjusted under different brightness lev-
els when the pixel value of Vbase is 0, 255 and c, respectively.

For each image, Vbase is the common basis, based on
which the brightness component V of any level can be ob-
tained by the above brightness transform. To compute Vbase,
without loss of generality, the histogram of Vbase is assumed
to be evenly distributed as shown in Fig. 3(a) and (b). 11
quantiles of the V component {p0, p0.1, p0.2, . . . , p1} are
used to roughly estimate the L(0) of the original image by
Eq. (4). The red dots in Fig. 3(a) and (b) are the quantiles of
the histogram of original image.

L(0) =
d

255
− 1, d ≈

∑
i pi
6

(4)

As shown in Fig. 3(a) and (b), d refers to the length of the
red line. The geometric interpretation of using quantiles to
estimate d is also illustrated in the figure. After the quantiles
are matched in pairs(such as {(p0, p1), (p0.1, p0.9) · · · }), the
averaged sum of pairs is used as the estimated value of d, and
the average operator is performed due to the fact that these
sums are not necessarily equal. As for V (0), it represents the
V component of the original image. And according to Eq.
(3), Vbase can be calculated when t = 0.

Action implementation. The nature of action imple-
mentation is to change the image brightness level. From the
brightness level L(t), L(t + 1) is updated by Eq. (5). The
cases that L lies out of the range of [-1, 1] can thus be avoid-
ed. For bright images, the changing scope of L is greater in
the darkening operation, and for dark images the changing
scope of L greater in the brightening operation, this is helpful
for promoting the image in a good direction.

 L(t+ 1) = 0.95L(t) + 0.05× 1 A(t) = A1

L(t+ 1) = 0.95L(t) + 0.05× (−1) A(t) = A2

Termination A(t) = A3

(5)

(a) −1 ≤ L < 0 (b) 0 ≤ L ≤ 1

Fig. 3. Vbase and brightness level estimation. (a): −1 ≤ L <
0(Linear mapping between the V component of a dark image
and Vbase). (b): 0 ≤ L ≤ 1(Linear mapping between the V
component of a bright image and Vbase).

3. EXPERIMENT

3.1. Experiment Setup

To illustrate the effectiveness of the proposed approach, ex-
periments are conducted on a remote sensing image dataset
Φ, which contains 25 aircraft categories. The dataset is con-
sisted of 13, 078 training images and 5, 606 test images. The
size of each image is 416 × 416 pixels. To demonstrate the
effectiveness of active brightness learning, a different bright-
ness transformation Eq. (6) is used to generate images of d-
ifferent brightness levels from the reference remote sensing
images

V ′ =

{
µV darken I
255− µ(255− V ) brighten I

(6)

According to Eq. (6), a new data set Φ′ is obtained by sequen-
tially setting µ to 0.6 and 0.3. Detector D is trained on Φ, but
the agent is trained on Φ+Φ′.

The agent network is a six-layer fully connected neural
network, and the neurons’ number in each layer are 512, 512,
512, 512, 512, 3. Adam optimizer is employed for agen-
t network learning with a basic learning rate of 0.001. The
agent network eventually converges after 280, 000 iterations,
including 210, 000 historical selection iterations and 70, 000
back propagation iterations. Mini-batch size is set to be 32.
Target network utilizes the soft update method with a factor
of 0.001. YOLOv3 is chosen as detector D for strategy learn-
ing, and mAP is used to measure recognition performances.
In the following sections, the performance on the reference
dataset Φ is denoted as reference performance (RP), and the
performance on the deteriorated dataset Φ′ without brightness
tunning is denoted as passive recognition performance (PRP),
the performance on the deteriorated dataset Φ′ with bright-
ness adjusted by the proposed approach is denoted as active
recognition performance (ARP).
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3.2. Experiment Analysis

Table 1. Recognition performance comparison.
Model Backbone RP PRP ARP

YOLOv3[7] DarkNet53 0.807 0.714 0.798

Faster RCNN[3]
VGG16 0.727 0.471 0.687

ResNet50 0.730 0.507 0.677

R-FCN[4]
ResNet50 0.740 0.589 0.700

ResNet101 0.749 0.577 0.711

SSD 300[8] VGG16 0.802 0.539 0.580

RetinaNet[10]
VGG16 0.799 0.282 0.559

ResNet50 0.795 0.401 0.643
ResNet101 0.802 0.468 0.678

Performances of YOLOv3 on deteriorated images and ad-
justed versions are listed in the first row of Table 1. On the
reference images, mAP is 0.807. However, mAP is reduced to
0.714 on the deteriorated images by the passive object recog-
nition. This shows the importance and necessity of brightness
adjustment. With the help of brightness adjustment, mAP on
the adjusted versions is improved to 0.798, which is near the
reference performance on the reference high-quality images.
Some typical results are shown in Fig. 4, from which it can
be seen that some objects failed to be recognized on the de-
teriorated image by passive object recognition strategy was
recognized correctly by the proposed active object recogni-
tion strategy. Moreover, as illustrated in the images of the
last two rows in Fig. 4, the performances on the adjusted im-
ages are even higher than that on the reference high-quality
images, which illustrates the effectiveness and advantages of
the proposed brightness adjustment approach.

Although the brightness adjustment strategy is learned
driven by YOLOv3, however, it is promising for other detec-
tors. For illustration, other four state-of-the-art recognition
approaches and their variants were tested on Φ′, and bright-
ness adjustment strategy driven by YOLOv3 is used directly
for active object recognition. Performances of different de-
tectors are listed in the other rows of Table 1. From Table
1, it can be observed that the performance improvement
taken by YOLOv3 is better than other detectors, the rea-
son lies in the fact that the brightness adjustment strategy is
learned driven by YOLOv3 and YOLO is good at detecting
small-size objects. For different detectors, PRPs on the de-
teriorated images reduced significantly. For instance, mAP
of RetinaNet+VGG16 is reduced from 0.799 to 0.282. For
the passive detectors, the degenerated performance is unac-
ceptable for practical applications. In contrast, the proposed
active object recognition strategy, ARPs are enhanced sub-
stantially. For example, mAP of Faster RCNN+VGG16 is
improved from 0.471 to 0.687. These differences illustrate
the universality of active object detection, and the universal-

ity is very important for online actively imaging procedure,
i.e., if the brightness adjustment strategy is embed into the
in-orbit camera, images acquired are promising for achieving
higher recognition performance.

(a) (b) (c)

Fig. 4. Results comparison. (a): Passive object recognition,
(b): Active object recognition. (c): Reference ground truth.
The images int 1-2 rows are the adjustment cases on bright
images, the images in 3-4 rows the adjustment cases of dark
images, and images in the 5th row are the adjustment cases
on reference high-quality images.

4. CONCLUSION

An active object recognition approach is proposed in this
paper, where a deep reinforcement learning strategy is used
to help object recognition module actively adjust brightness.
Experiments demonstrate the necessities of adaptive bright-
ness adjustment and the effectiveness of the proposed active
object recognition approach. The future work is mainly relat-
ed to in-depth validation and further development in both the
imaging procedure and object recognition procedure.
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