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ABSTRACT

High resolution astronomical imagery plays a critical role in
multiple remote sensing applications. In this work, we intro-
duce a novel post-acquisition computational technique aiming
to recover the high-quality versions of blurry and degraded as-
tronomical observations. Additionally, the proposed scheme
is able to retrieve significant information regarding the char-
acteristic properties of the blurring kernel, i.e point spread
function (PSF). In order to accomplish this goal, we exploit
the mathematical frameworks of Sparse Reprentations, and
the Alternating Direction Method of Multipliers (ADMM).
Experimental results demonstrate the ability of the proposed
approach to synthesize high-quality astronomical imagery.

1. INTRODUCTION

Astronomical image deconvolution is one of the most chal-
lenging problems in the remote sensing community due to
the fact that reflected or emitted light from an astronomical
object that is observed from the earth’s surface and passes
through the atmosphere, results into blurry and noisy obser-
vations. Due to the time and space varying fluctuations that
are caused by atmospheric turbulence, characteristics of the
blurring operator cannot be precisely defined [1]. Even for
spaceborne telescopes, a spatially varying Point Spread Func-
tion (PSF) may characterize the acquisition process, leading
to uneven blurring effects [2]. To overcome this issue, ap-
propriate regularization terms should be imposed for both the
PSF estimation and the sharp image reconstruction.

Formally, the problem of image deconvolution or de-
blurring can be modeled as that of trying to estimate the
unknown sharp image denoted by f , from the low quality
blurred image g which is generated according to

g = h ∗ f + η, (1)

where h corresponds to the imaging system’s PSF and η is the
additive noise. Image de-blurring techniques are divided into
two main categories, the non-blind, where the PSF is known,
and blind when the PSF is unknown. In cases where the true

PSF is unknown but prior knowledge related to its character-
istics are known are classified as semi-blind.

In this work we investigate the core problem of semi-blind
image deconvolution, where a remote sensing instrument ac-
quires a low-quality blurred image and the objective is to es-
timate the high-quality version of the scene, by formulating
the problem using the sparse representations framework [3].
Unlike established approaches, this work adheres to the fol-
lowing assumptions:(i) both the high quality image and the
blurring kernel operator admit sparse representations when
mapped to appropriate dictionaries; (ii) appropriate sparsify-
ing dictionaries are available for both the image space and the
blurring kernel space. Regarding the image space, we adhere
to a data driven dictionary modelling approach exploiting the
K-SVD algorithm [4], while for the blurring kernel, we as-
sume a Gaussian mixture. We simultaneously estimate the
clean signal and the blurring kernel via the proposed Alternat-
ing Direction Method of Multipliers (ADMM) [5] framework
optimization framework. Figure 1 presents a visual illustra-
tion of the proposed algorithmic scheme.

Fig. 1: Illustration of the proposed deconvolution approach. The
low quality input image is expressed as the convolution of the im-
age and the blurring signal, each of which is expressed as a sparse
representation in the appropriate dictionary.

Consequently, our algorithm can be valuable in a wide
range of remote sensing applications.
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2. PREVIOUS WORK

The main goal of blind de-convolution approaches, is to es-
timate simultaneously the PSF and the de-blurred image. In
fact, it was recently shown that the problem of blind signal
deconvolution is, in general, non-identifiable, even for signals
that are naturally sparse [6]. One class of methods for blind
deconvolution for example assume the existence of multiple
images of the same scene at different spectral bands [7], im-
ages with different spectral resolution as it is the case in pan-
sharpening where both panchormatic and multispectral im-
agery is available [8], or side information from modules like
inertia measurement units [9].

Regardless of the amount of available imagery, a critical
parameter of deconvolution methods is related to the assumed
signal prior, where Laplacian priors [10] or Total Variation
(TV) priors [11] has been successfully employed. Sparsity
has also been greatly investigated as a powerful signal prior
for image deconvolution [12]. Specifically, in [7], the authors
propose a blind de-blurring method, utilizing the sparsity as
prior knowledge. Instead of solving the ill-posed deconvolu-
tion problem, the authors use the sparsity constraint subject
to a dictionary matrix, created from patches extracted from
the blurred image. Likewize, in [13] the authors propose a
matching-pursuit optimization technique for semi-blind de-
convolution. Another interesting frequency-domain decon-
volution approach was proposed in [1], were the authors ex-
ploited a wavelet domain regularized filtering technique.

The problem of blind and semi-blind deconvolution of
strickly sparse signals has been explored from multiple as-
pects including Bayesian [14] and sparse-based approaches
[15]. Additionally, the authors in [16] proposed an interest-
ing coupled sparsity prior technique for solving the problem
of blind image deconvolution. Even more recently, it was
shown that under minimal assumptions regarding the struc-
ture of subspaces that generate the observations, identifica-
tion of the true signal is possible [17]. An example of such
structure correspond to the model considered here where the
convolved signals can be sparsely represented in appropriate
dictionaries [18]. Extension of sparse coding, where the out-
put signal corresponds to a linear mapping between a sparse
vector and a dictionary matrix, have also be proposed in the
case of convolutional sparse coding where the mapping is re-
placed by the convolution operator [19].

3. PROPOSED FORMULATION

Let z ∈ Rm be the vector that corresponds to the patches of
the observed blurred image Z that is modulated by the spa-
tially invariant convolution, produced as: z = s ∗ h, where
s ∈ Rm stand for the patches of the original image S, h is
the Point Spread Function (PSF), and ∗ denotes a convolution
operator. The task of blind image deconvolution is composed
of two parts: estimation of the PSF h, and deconvolution of

the original image, S. In our proposed approach, we assume
that the patches of the original, high-quality image, s ∈ Rm
can be represented as a sparse linear combination in a dictio-
nary D ∈ Rm×n, generated from multiple training images,
as: s = Dw, w ∈ Rn, ||w||0 � m.

Motivated by [20], we assume that a blurring dictionary
composed of ` prototypical blurring functions, B ∈ Rp×`
is available . This dictionary is constructed based on the as-
sumption that an accurate approximation of the blurring func-
tion can be achieved by selecting a small number of elements
from the blurring dictionary. Consequently, the blurring ker-
nel can be expressed as a sparse linear combination between
the blurring dictionary B, and a sparse coding vector k,∈ R`,
as: h = Bk, k ∈ R`, ||k||0 � `. In this work, we consider
a dictionary consisting of mixtures of zero-mean Gaussian

functions with different variances: bi = 1√
2πσ2

i

exp
−x
2σ2
i . The

PSF is generated by linear combinations between the blur-
ring dictionary elements and the sparse coefficients k ∈ R`,
as: h =

∑`
j=1 bjkj . According to the aforementioned as-

sumptions, the formulation of the recovery problem can be
expressed as:

min
w,k

1

2
||z− (Dw) ∗ (Bk)||2F + λ1||w||1 + λ2||k||1, (2)

where λ1 > 0 and λ2 > 0 denote the sparsity regulariza-
tion parameters. In order to solve efficiently the problem
expressed by Eq. (2), we exploit the scheme of the Alternat-
ing Direction Method of Multipliers (ADMM) [5]. Taking
into consideration the very good performance of ADMM
in several inverse image processing problems [21], it is a
natural choice to utilize for the proposed blind image de-
convolution scheme. Reformulating (2) in a suitable form for
the ADMM by introducing auxiliary variables, along with
their constraints, the minimization problem is given by:

min
w,k,p,q

1

2
||z− (Dw) ∗ (Bk)||2F + λ1||p||1 + λ2||q||1

subject to p = w, q = k

(3)

Following the general algorithmic strategy of the ADMM
scheme, we seek for the stationary point, solving iteratively
for one of the variables, while keeping the others fixed. The
augmented Lagrangian function for our problem is formu-
lated as:

L(z,w,k,p,q,y1,y2) = ||z− (Dw) ∗ (Bk)||2F+
λ1||p||1 + λ2||q||1 + yT1 (p−w) + yT2 (q− k)+
c1
2
||p−w||2F +

c2
2
||q− k||2F ,

(4)

where y1 and y2 denote the Lagrange multiplier vectors,
while c1 > 0 and c2 > 0 stand for the step size parameters.
Subsequently, the ADMM iterations for our problem are
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• Sparse Coding Sub-problems: For minimizing the aug-
mented Lagrangian functions subject to the sparse cod-
ing vectors w and k, we solve the individual sparse
coding problems:

wk+1 = argmin
w

L(z,wk,kk,pk,qk,yk1 ,y
k
2)

kk+1 = argmin
k

L(z,wk+1,kk,pk,qk,yk1 ,y
k
2) (5)

Algorithm 1 Semi-Blind Signal Deblurring
Input: blurry signal z, high resolution dictionary matrix D,
blurring dictionary matrix B, number of iterationsN and step
size parameters c1, c2.
Initialization: Initialize Lagrange multiplier vectors y1 =
y2 = 0.
for n = 1, · · · , N do

1. Update w and k via Eq. (7)

2. Update p and q via Eq. (9)

3. Update Lagrangian vectors y1 and y2 via Eq. (11)

end

By taking into consideration the periodic extensions of
the acquired signals, the convolution operation can be
expressed as the product of multiplication with an ap-
propriately generated circular matrix, such that:

(Dw) ∗ (Bk) = C{Dw} · (Bk) = (Dw) · C{Bk}, (6)

where C{·} denotes the operator that produces a
Toeplitz matrix by performing the circular convolu-
tion of the signal with an appropriately sized identity
matrix. Thus, setting ∇wL = 0 and ∇kL = 0, the
sub-problems admit closed-form solutions:

wk+1 = (ATA+ c1I)
−1(AT z+ (yk1)

T + c1p
k)

kk+1 = (GTG+ c2I)
−1(GT z+ (yk2)

T + c2q
k)
,

(7)

where A = D · C{Bk} and G = B · C{Dw}.

• Sub-problems p and q

∇pL = ∇p

(
λ1||p||1 + yT1 (p−w) +

c1
2
||p−w||22

)
∇qL = ∇q

(
λ2||q||1 + yT2 (q− k) +

c2
2
||q− k||22

)
(8)

Setting,∇pL = ∇qL = 0, we have

p? = Sλ1

(∣∣∣w − yT1
c1

∣∣∣), and q? = Sλ2

(∣∣∣k− yT2
c2

∣∣∣),
(9)

where Sλ1 ,Sλ2 denote the soft-thresholding operators:

Sλ(x) = sign(x)max(|x| − λ, 0), (10)

Finally, the Lagrangian vectors are updated as:

y
(n+1)
1 = y

(n)
1 + c1(p−w)

y
(n+1)
2 = y

(n)
2 + c2(q− k),

(11)

where n denotes the number of iterations.

4. EXPERIMENTAL EVALUATION

In this section, we investigate the performance of the pro-
posed semi-blind Deblurring technique when applied to
the deconvolution of astronomical imagery. The recon-
struction performance between the acquired ground truth
and the reconstructed images, is quantified in terms of
the Peak Signal to Noise Ratio (PSNR) metric defined as:
PSNR(x,y) = 20 log10

Lmax√
MSE(x,y)

, where MSE(x, y) =

1
N

∑N
i=1(xi − yi)2, x and y, denote the pixel values in the

reference and the recovered images, while Lmax is the max-
imum possible pixel value of the image. Concerning the
generation of the blurring dictionary, we utilized a mixture
of Gaussian functions with 7 × 7 filter size, for variant val-
ues of standard deviation. Additionally, regarding the high-
resolution dictionary, we exploited a K-SVD single dictionary
learning approach [4] based on high-resolution astronomical
image examples of 5 × 5 patch-sizes. For both dictionaries,
the number of selected atoms was set to 512, balancing the
computational cost with the robust reconstructions. In or-
der to justify the quality of our reconsructions, we compare
our results over competitive state-of-the-art deconvolution
techniques. Specifically, we compare our algorithm against
Zhang’s et al. [16] blind deblurring technique, and against
the frequency domain, regularized filtering approach that was
proposed in [1].

Figures 2, 3 depict the proposed semi-blind deconvolu-
tion system’s reconstruction compared to the state-of-the-art.
In both experiments, we downgrade the quality of the origi-
nal acquired images, by convolving them with a mixture of
Gaussian point spread functions (PSF’s) of 7 × 7 filter size
and standard deviations varying between [0.5, 0.9]. As we
may notice, in Figure 2, the proposed semi-blind deconvo-
lution scheme outperforms both Zhang’s [16] coupled adap-
tive sparse deblurring technique and the regularized filtering
[1] approaches, both visually, but also in terms of the PSNR
quantitative metric. For instance, the regularized filtering ap-
proach approach achieves a PSNR value of 23.18 dB, Zhang’s
reconstruction reaches the PSNR value of 26.34 dB, while
the proposed algorithm achieves the largest of 32.87 dB. As
we may observe, our semi-blind scheme provides a consider-
able improvement in the reconstruction quality of the blurred

2159



(a) Blurred Scene (b) Reg. Filt. [1], PNSR=23.18dB (c) Zhang’s [16], PSNR=26.34 dB (d) Proposed, PSNR=32.87 dB

Fig. 2: Astronomical Image Recovery: In this simulation, we observe that the proposed scheme is able to extract significant information, and
enhance the quality of this challenging scheme, when it is compared with the state-of-the-art, both visually and quantitatively in terms of the
PSNR error metric.

(a) Blurred Scene (b) Reg. Filt. [1], PSNR=22.43 dB (c) Zhang’s [16], PSNR=27.43 dB (d) Proposed, PSNR=43.16 dB

Fig. 3: Astronomical Scene Reconstruction: The quality of the proposed semi-blind system’s reconstruction is investigated in this challeng-
ing scene. We observe, that under realistic conditions the proposed semi-blind deconvolution scheme provides high quality reconstruction
compared with several competitive state-of-the-art techniques.

scene, in comparison with the blurry input imagery. Addi-
tionally, in Figure 3 we observe the high-performance of the
proposed semi-blind deblurring scheme when is applied to an-
other challenging astronomical scene. In this simulation, the
PSNR reconstruction errors of the regularized filtering and
Zhang’s techniques are 22.43dB and 27.34 dB, respectively,
while the proposed system achieves the highest value of 43.16
dB. As we may observe the proposed semi-blind deconvolu-
tion scheme is able to substantially improve the quality of this
challenging scene.

Finally, Figure 4 illustrates the the empirical convergence
of the proposed semi-blind deconvolution algorithm. Specif-
ically, we depict the normalized reconstruction errors for
the extraction of the blurry and high-resolution sparse coef-
ficients. We note that both the blurry and the high-quality
coefficients converge after approximately 5 iterations.

5. CONCLUSION

In this work, we proposed a novel semi-blind deconvolution
approach for astronomical imagery, employing the mathe-
matical framework of Sparse Representations, for encoding
the relations between high and low quality observations.
To achieve this goal, an efficient formulation that extracts
both the high-quality and degraded sparse coefficients was

Fig. 4: Convergence Behaviour of the proposed ADMM semi-blind
deconvolution scheme. For the extraction of both the blurry and the
high-resolution coefficients, we observe that the proposed algorithm
converges into a stationary point.

proposed based on the Alternating Direction Method of Mul-
tipliers. Experimental results support our claim that high
quality reconstruction is obtained using our method. Our
scheme can be extended to handle both arbitrary low-to-high
resolution enhancements and additional sources of image
degradation.
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Rocco Restaino, José M Bioucas-Dias, Giorgio A Lic-
ciardi, and Jocelyn Chanussot, “Pansharpening based on
semiblind deconvolution,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 53, no. 4, pp. 1997–
2010, 2015.

[9] Neel Joshi, Sing Bing Kang, C Lawrence Zitnick, and
Richard Szeliski, “Image deblurring using inertial mea-
surement sensors,” in ACM Transactions on Graphics
(TOG). ACM, 2010, vol. 29, p. 30.

[10] Dilip Krishnan and Rob Fergus, “Fast image deconvolu-
tion using hyper-laplacian priors,” in Advances in Neu-
ral Information Processing Systems, 2009, pp. 1033–
1041.
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